matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperNormalteiler
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Normalteiler
Normalteiler < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalteiler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:55 Mo 08.06.2009
Autor: ms2008de

Aufgabe
Sei U eine Untergruppe einer endlichen Gruppe G. Beweisen Sie: Falls es keine weitere Untergruppe von G gibt, die genauso viele Elemente wie U hat, so ist U Normalteiler von G

Hallo,
Hab einige Probleme hierbei auf nen richtigen Ansatz zu kommen. Ich meine für Gruppen G von Primzahlordnung oder Ordnung 1 ist nach dem Satz von Lagrange klar, dass jedes U ein Normalteiler ist. Des weiteren konnte ich bereits zeigen, dass wenn |U|= [mm] \bruch{|G|}{2} [/mm] ist, dann ist U Normalteiler, weiß jedoch nich, ob mir das für diese Aufgabe weiterhilft? Hätte jemand bitte einen Tipp für mich, wär für jede Hilfe dankbar,

Viele Grüße

        
Bezug
Normalteiler: Antwort
Status: (Antwort) fertig Status 
Datum: 21:49 Mo 08.06.2009
Autor: felixf

Hallo!

> Sei U eine Untergruppe einer endlichen Gruppe G. Beweisen
> Sie: Falls es keine weitere Untergruppe von G gibt, die
> genauso viele Elemente wie U hat, so ist U Normalteiler von
> G
>
>  Hallo,
>  Hab einige Probleme hierbei auf nen richtigen Ansatz zu
> kommen. Ich meine für Gruppen G von Primzahlordnung oder
> Ordnung 1 ist nach dem Satz von Lagrange klar, dass jedes U
> ein Normalteiler ist. Des weiteren konnte ich bereits
> zeigen, dass wenn |U|= [mm]\bruch{|G|}{2}[/mm] ist, dann ist U
> Normalteiler, weiß jedoch nich, ob mir das für diese
> Aufgabe weiterhilft?

Das hilft dir alles nicht weiter.

Beachte: Ist $U$ eine Untergruppe und $g [mm] \in [/mm] G$, so ist [mm] $g^{-1} [/mm] U g$ ebenfalls eine Untergruppe mit genausovielen Elementen wie $U$.

LG Felix


Bezug
                
Bezug
Normalteiler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:55 Di 09.06.2009
Autor: ms2008de

Vielen Dank schonmal,
Ich hab nun folgendes gemacht:
Beweis: Es genügt zu zeigen, dass wenn U kein Normalteiler ist, so gibt es mindestens eine weitere Untergruppe von G, die genauso viele Elemente wie U hat.
Sei U Untergruppe von G und kein Normalteiler, dann gilt:
gU [mm] \not= [/mm] Ug für alle g [mm] \in [/mm] G [mm] |*g^{-1} [/mm]
[mm] \Rightarrow gUg^{-1} \not= Ugg^{-1} [/mm] = U

Nun hab ich gezeigt mit den Untergruppenkriterien, dass  [mm] gUg^{-1} [/mm] eine weitere Untergruppe [mm] U_{2} [/mm] von G ist. Das einzige, was mir nun noch fehlt ist, wie ich zeigen kann, [mm] gUg^{-1} [/mm] so viele Elemente wie U hat, da komm ich irgendwie überhaupt nich weiter, könnt mir da bitte noch jemand einen Tipp zu geben?

Viele Grüße

Bezug
                        
Bezug
Normalteiler: Antwort
Status: (Antwort) fertig Status 
Datum: 16:07 Di 09.06.2009
Autor: statler

Hi!

> einzige, was mir nun noch fehlt ist, wie ich zeigen kann,
> [mm]gUg^{-1}[/mm] so viele Elemente wie U hat, da komm ich irgendwie
> überhaupt nich weiter, könnt mir da bitte noch jemand einen
> Tipp zu geben?

Naja,  die Abb. $u [mm] \mapsto gug^{-1}$ [/mm] ist bijektiv. Du kannst (hoffentlich) ganz leicht die Umkehrabb. angeben.

Gruß aus HH-Harburg
Dieter

Bezug
                                
Bezug
Normalteiler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:19 Di 09.06.2009
Autor: ms2008de

Danke, die Umkehrabbildung sollte dann wohl u [mm] \mapsto g^{-1}ug [/mm] sein?

Bezug
                                        
Bezug
Normalteiler: Antwort
Status: (Antwort) fertig Status 
Datum: 16:25 Di 09.06.2009
Autor: statler


> Danke, die Umkehrabbildung sollte dann wohl u [mm]\mapsto g^{-1}ug[/mm]
> sein?

Ja, nich :-)

Für eine perfekte Lösung müßtest du dir jetzt noch den begründenden Text zusammenreimen, der reicht je nach Wissensstand von 'trivial' bis sonstwohin ...

Ciao
Dieter


Bezug
                                                
Bezug
Normalteiler: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:37 Di 09.06.2009
Autor: ms2008de

Dann zeig ich eben gleich, dass die beiden Untergruppen zueinander isomorph sind, indem ich zeig, dass es einen Morphismus gibt und dieser injektiv und surjektiv ist

Bezug
                        
Bezug
Normalteiler: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:02 So 12.12.2010
Autor: katrin10

Hallo,

ich bin gerade dabei, dieselbe Aufgabe zu bearbeiten und möchte nun mit den Untergruppenkriterien überprüfen, ob U2=gUg-1 eine Untergruppe von G ist. Das neutrale Element von G liegt in U und damit auch in U2. Doch wie zeige ich Abgeschlossenheit und dass das Inverse in U2 liegt?
Ich bin für jede Hilfe dankbar.

Viele Grüße

Bezug
                                
Bezug
Normalteiler: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:24 So 12.12.2010
Autor: katrin10

Ich habe mein Problem gelöst.

Bezug
                                        
Bezug
Normalteiler: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:36 So 12.12.2010
Autor: katrin10

Dank der guten Erklärungen habe ich es jetzt verstanden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]