Normalverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Ein Tierchen läuft in einer Ebene eine Streckeneinheit weit in eienr zufälligen Richtung [mm] \phi_{i}, [/mm] sucht sich dann eine neue Richtung [mm] \phi_{2} [/mm] und läuft wieder eine Streckeneinheit weit usw. Hierbei seien die Winkel [mm] \phi_{i} [/mm] unabhängig und gleichverteilt auf [mm] [0,2\pi]. [/mm] Es sei [mm] D_{n} [/mm] der Abstand zwischen dem Ausgangspunkt und dem Aufenthaltsort nach dem n-ten Schritt. Sei X'_{n} die x-Koordinate des Tierchens nach dem n-ten Schritt. Präzisieren und beweisen Sie: für große n ist X'_{n} approximativ normalverteilt! |
HALLO!
Es gilt [mm] D_{n}=|X_{n}|_{2} [/mm] (eukl.Norm).
Es gilt für [mm] X_{n}= \summe_{i=1}^{n}(cos \phi_{i}, [/mm] sin [mm] \phi_{i})=(\summe_{i=1}^{n}cos \phi_{i},\summe_{i=1}^{n} [/mm] sin [mm] \phi_{i}), [/mm] also der Ort des Tierchens nach dem n-ten Schritt.
Zu zeigen ist: Für große n ist X'_{n} appr.normalverteilt.
Die Dichtefunktion der Normalverteilung ist: [mm] \theta(x)= \bruch{1}{\wurzel{2\pi}}e^{-\bruch{x^{2}}{2}}
[/mm]
Jetzt denke ich mal, dass ich folgendes ausrechnen muss, komm aber irgendwie nicht weiter, weil ich irgendwo einen Wurm drin habe. Es kann aber auch sein, dass ich vollkommen daneben liege, und man was ganz anderes ausrechnen muss :
Man betrachtet von [mm] X_{n} [/mm] nur die x-Koordinate, also X'_{n}= [mm] \summe_{i=1}^{n}cos \phi_{i}
[/mm]
Dann:
[mm] P(\summe_{i=1}^{n}cos \phi_{i}\le [/mm] c)= [mm] \Theta(c)= \integral_{-\infty}^{c}{\theta(x) dx}=
[/mm]
[mm] \integral_{-\infty}^{c}{\bruch{1}{\wurzel{2\pi}}e^{-\bruch{(\summe_{i=1}^{n}cos \phi_{i})^{2}}{2}} d\summe_{i=1}^{n}cos \phi_{i}}
[/mm]
Jetzt komm ich beim Integral nicht weiter. Wie muss man hier weiterrechnen? Oder lieg ich da falsch? Ich habe einfach die integrale Normalapproximation der Binomialverteilung hergenommen dafür.
Hoffentlich kann mir einer helfen!
DANKE!
Infinity
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:38 Mi 17.01.2007 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|