matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastik-SonstigesNormalverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Stochastik-Sonstiges" - Normalverteilung
Normalverteilung < Sonstiges < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalverteilung: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 12:25 Do 15.03.2007
Autor: miniscout

Hallöle!

Ich habe eine Verständnisfrage bzgl. der Normalverteilung, da mir noch nicht so ganz klar ist, wann man welche der beiden Formeln für [mm] \phi [/mm] benutzt.

(1) [mm] $\phi [/mm] = [mm] \bruch{1}{\sigma * \wurzel{2* \pi}} [/mm] * [mm] e^{-\bruch{1}{2}(\bruch{k-\mu}{\sigma})^2}$ [/mm]

(2) [mm] $\phi [/mm] = [mm] \bruch{1}{\wurzel{2* \pi}} [/mm] * [mm] e^{-\bruch{1}{2}(\bruch{k-\mu}{\sigma})^2}$ [/mm]


Könnt ihr mir das erklären? Oder kennt ihr eine Seite, auf der das, möglichst ausführlich, erklärt wird?

DANKE!!!

Gruß miniscout [read]


        
Bezug
Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:30 Do 15.03.2007
Autor: luis52


> Hallöle!
>  
> Ich habe eine Verständnisfrage bzgl. der Normalverteilung,
> da mir noch nicht so ganz klar ist, wann man welche der
> beiden Formeln für [mm]\phi[/mm] benutzt.
>
> (1) [mm]\phi = \bruch{1}{\sigma * \wurzel{2* \pi}} * e^{-\bruch{1}{2}(\bruch{k-\mu}{\sigma})^2}[/mm]
>  
> (2) [mm]\phi = \bruch{1}{\wurzel{2* \pi}} * e^{-\bruch{1}{2}(\bruch{k-\mu}{\sigma})^2}[/mm]
>  
>
> Könnt ihr mir das erklären? Oder kennt ihr eine Seite, auf
> der das, möglichst ausführlich, erklärt wird?
>  

>

Moin miniscout,

die zweite wirst du nie im Zusammenhang mit der Normalverteilung, finden, da es sich nicht um eine Dichte handelt, es sei denn, es ist [mm] $\sigma=1$. [/mm] Die allgemeine Form der Dichte einer Normalverteilung schreibt man beispielsweise wie in (1) als [mm]f(x) = \bruch{1}{\sigma * \wurzel{2* \pi}} * e^{-\bruch{1}{2}(\bruch{x-\mu}{\sigma})^2}[/mm]. Der Buchstabe [mm] $\phi$ [/mm] oder [mm] $\varphi$ [/mm] wird vielfach fuer die Dichte der *Standardnormalverteilung* verwandt, also   [mm]\varphi(z) = \bruch{1}{\wurzel{2* \pi}} * e^{-\bruch{z^2}{2}}[/mm]. Man kann die Standardnormalverteilungen  als "Mutter aller Normalverteilung" bezeichnen, weil sich Vieles auf sie zurueckfuehren laesst. Z.B. ist [mm] $f(x)=\varphi((x-\mu)\sigma)/\sigma$. [/mm]

Hast du hier schon einmal geschaut?

[]http://de.wikipedia.org/wiki/Normalverteilung

hth

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]