matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikNormalverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Normalverteilung
Normalverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:05 Mi 28.01.2009
Autor: rockkruemel

Aufgabe
Für einen Heizungsbetrieb führt ein Monteur die jährlich routinemäßigen Kontrollen bei Heizungskesseln von Privatpersonen aus. Aufgrund von Erfahrungen weiß er, dass die Zeitdauer von einem Kundenbesuch (inklusive Fahrtzeit) als eine normal verteile Variable gesehen werden kann mit  μ = 50 Minuten und σ = 10 Minuten.
A Wie groß ist die Wahrscheinlichkeit, dass ein Kundenbesuch mehr als eine Stunde dauert?
B Wie groß ist die Wahrscheinlichkeit, das 4 geplante Kundenbesuche zusammen mehr als 4 Stunden dauern?

Hallo Zusammen,

diese Aufgabe bereitet mir einige Probleme.
Die A ergibt eine Wahrscheinlichkeit von 0,1587, dass ein Kundenbesuch des Monteurs länger als eine Stunde dauert.

Allerdings weiß ich nicht, wie ich bei der B vergehen soll. Kann ich den Erwartungswert hochrechnen auf 4 Stunden und die Standardabw. auch?!
Oder komme ich auf das Ergebnis, wenn ich die Wahrscheinlichkeit von einem Besuch auf 4 hochrechne?

Ich komm da nicht weiter und wäre für externe Hilfe sehr Dankbar.
Viele Grüße rockkruemel

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:18 Mi 28.01.2009
Autor: luis52

Moin rockkruemel,

[willkommenmr]

> Allerdings weiß ich nicht, wie ich bei der B vergehen soll.
> Kann ich den Erwartungswert hochrechnen auf 4 Stunden und
> die Standardabw. auch?!
>  Oder komme ich auf das Ergebnis, wenn ich die
> Wahrscheinlichkeit von einem Besuch auf 4 hochrechne?

Was meinst du mit "hochrechnen"? Kannst du mal deine beiden
Loesungen aufschreiben. Dann kann man sehen, welche die richtige ist.

vg Luis

Bezug
                
Bezug
Normalverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:43 Mi 28.01.2009
Autor: rockkruemel

1.) "hochrechnen"
EW= 200 / STAND= 40 / x> 240
--> daraus ergibt sich eine Wahrscheinlichkeit von 0,1587
Ist aber die gleiche Wahrscheinlichkeit wie in A.

2.) 0,1587 * 4= 0,6348

Aber ich denke beide Lösungsansätze sind vollkommen falsch.
Danke für die Hilfe schonmal.

Bezug
                        
Bezug
Normalverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:03 Mi 28.01.2009
Autor: generation...x

Vielleicht solltest du dir den Unterschied zwischen Varianz und Standardabweichung nochmal anschauen - ansonsten gilt mein Beitrag von vorhin...

Bezug
                                
Bezug
Normalverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:11 Mi 28.01.2009
Autor: rockkruemel

also muss ich die standardabweichung nur quadrieren?
dann erhalte ich 0,0252

Bezug
                                        
Bezug
Normalverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:25 Mi 28.01.2009
Autor: generation...x

Als Gesamtlösung? Könnte hinkommen, man liegt 2 [mm] \sigma [/mm] über dem Erwartungswert, wenn ich richtig gerechnet habe.

Bezug
                                                
Bezug
Normalverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:28 Mi 28.01.2009
Autor: rockkruemel

Okey, vielen Dank.

Ich befürchte auch, dass meine Dozentin wenig Ahnung hat, sie kanns mir nicht mal erklären.

Viele Danke für eure/ deine Mühe.

Bezug
                                                        
Bezug
Normalverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:31 Mi 28.01.2009
Autor: generation...x

Weia - was studierst du denn?

Bezug
                                                                
Bezug
Normalverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:33 Mi 28.01.2009
Autor: rockkruemel

logistik & marketing auf management...
marktforschung also statistik ist nur nebenfach...

wird ne witzige klausur morgen.

Bezug
                                                                        
Bezug
Normalverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:39 Mi 28.01.2009
Autor: generation...x

Mein Beileid (zur Dozentin) [happy]

Wenn du tapfer sein willst, kannst du dir noch den Wikipedia-Beitrag zur Normalverteilung anschauen. Da findest du wahrscheinlich mehr Informationen als du haben willst...

Bezug
                                                                                
Bezug
Normalverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:41 Mi 28.01.2009
Autor: rockkruemel

danke für die tipps!

werd jetzt mal meine alten lk klausuren noch üben, da weiß ich dann sicher auch noch mehr als sie wissen will;)

Bezug
        
Bezug
Normalverteilung: Tipp
Status: (Antwort) fertig Status 
Datum: 12:25 Mi 28.01.2009
Autor: generation...x

Da hilft ein kleiner Satz, den ihr bestimmt gemacht habt: Die Summe unabhängiger, normalverteilter Zufallsvariablen ist wieder normalverteilt. Erwartungswert bzw. Varianz ergeben sich durch Addition der einzelnen Erwartungswerte bzw. Varianzen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]