matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenstochastische AnalysisNormalverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "stochastische Analysis" - Normalverteilung
Normalverteilung < stoch. Analysis < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:44 Mo 30.01.2012
Autor: piccolo1986

Hey,
ich möchte ne Wahrscheinlichkeit ausrechnen, mach aber irgendwo nen Fehler, den ich nicht sehe.
Also gegeben ist ne Normalverteilte Zufallsvariable X mit [mm] \mu=11 [/mm] und [mm] \sigma^2=1,3 [/mm] und es ist P(X>12). Dann gilt doch:

[mm] P(X>12)=1-P(X\le 12)=1-\integral_{-\infty}^{12}{\frac{1}{\sqrt{2\pi\sigma^2}}\exp(-\frac{(x-\mu)^2}{2\sigma^2}) dx} [/mm]

Jetzt substituiere ich: [mm] a=x-\mu, [/mm] sodass:
[mm] P(X>12)=1-\integral_{-\infty}^{1}{\frac{1}{\sqrt{2\pi\sigma^2}}\exp(-\frac{a^2}{2\sigma^2}) da} [/mm]
[mm] =1-\frac{1}{\sqrt{2\pi\sigma^2}}(-\frac{\sigma^2}{a}\exp(-\frac{a^2}{2\sigma^2})) |_{-\infty}^{1} [/mm]
[mm] =1+\frac{1}{\sqrt{2\pi\sigma^2}}\frac{\sigma^2}{1}\exp(-\frac{1}{2\sigma^2}) [/mm]   >1

Sieht jemand den Fehler, denn das Ergebnis darf ja nicht größer als 1 sein?

mfg
piccolo

        
Bezug
Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:24 Mo 30.01.2012
Autor: luis52


>  
> Jetzt substituiere ich: [mm]a=x-\mu,[/mm] sodass:
>  
> [mm]P(X>12)=1-\integral_{-\infty}^{1}{\frac{1}{\sqrt{2\pi\sigma^2}}\exp(-\frac{a^2}{2\sigma^2}) da}[/mm]
>  


M.E. heisst es

[mm]P(X>12)=1-\integral_{-\infty}^{1\red{-\mu}}{\frac{1}{\sqrt{2\pi\sigma^2}}\exp(-\frac{a^2}{2\sigma^2}) da[/mm]

vg Luis




Bezug
                
Bezug
Normalverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:48 Di 31.01.2012
Autor: piccolo1986

Hallo,
> M.E. heisst es
>  
> [mm]P(X>12)=1-\integral_{-\infty}^{1\red{-\mu}}{\frac{1}{\sqrt{2\pi\sigma^2}}\exp(-\frac{a^2}{2\sigma^2}) da[/mm]
>  
> vg Luis

Ich hatte bei den Grenzen [mm] \mu=11 [/mm] gesetzt, von daher hatte ich schon [mm] 12-\mu=1 [/mm] erhalten.

mfg piccolo


Bezug
                        
Bezug
Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:25 Di 31.01.2012
Autor: Gonozal_IX

Hiho,

wie ullim bereits schrieb, gibt es keine analytische Lösung für die Dichte der Normalverteilung.
Aus diesem Grund wirst du die Verteilung einer normalverteilten Zufallsvariable nie explizit berechnen können, sondern benötigst dafür immer eine Tabelle für die Werte einer Normalverteilung, an welcher du die Werte ablesen kannst.

MFG,
Gono.

Bezug
                                
Bezug
Normalverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:43 Di 31.01.2012
Autor: piccolo1986

Ahh, ok, nu hab ichs raus, transformiere das erst auf Standardnormalverteilung und bekomme dann den Wert aus der entsprechenden Tabelle:-)

danke

mfg piccolo

Bezug
        
Bezug
Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:53 Di 31.01.2012
Autor: ullim

Hi,


> Jetzt substituiere ich: [mm]a=x-\mu,[/mm] sodass:
>  
> [mm]P(X>12)=1-\integral_{-\infty}^{1}{\frac{1}{\sqrt{2\pi\sigma^2}}\exp(-\frac{a^2}{2\sigma^2}) da}[/mm]
>  
> [mm]=1-\frac{1}{\sqrt{2\pi\sigma^2}}(-\frac{\sigma^2}{a}\exp(-\frac{a^2}{2\sigma^2})) |_{-\infty}^{1}[/mm]


[mm] \left(-\frac{\sigma^2}{a}\exp(-\frac{a^2}{2\sigma^2}\right) [/mm] ist keine Stammfunktion von [mm] \exp\left(-\frac{a^2}{2\sigma^2}\right) [/mm]



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]