matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikNormalverteilung Goldmine
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Stochastic Theory" - Normalverteilung Goldmine
Normalverteilung Goldmine < Stochastic Theory < University < Maths <
View: [ threaded ] | ^ Forum "Uni-Stochastic Theory"  | ^^ all forums  | ^ Tree of Forums  | materials

Normalverteilung Goldmine: Frage (beantwortet)
Status: (Question) answered Status 
Date: 17:17 Di 09/10/2018
Author: hase-hh

Aufgabe
Der Goldanteil X einer Ladung des abgebauten Gesteins einer Mine sei normalverteilt mit [mm] \mu [/mm] = 3,7 und [mm] \sigma [/mm] = 0,081.

Es wird, aus wirtschaftlichen Gründen, entschieden, dass nur noch 60% der Ladungen (mit dem höheren Goldanteil) in die Weiterverarbeitung gehen.

a) Ab welchem Goldanteil wird die Ladung nach den neuen Richtlinien weiterverarbeitet?


Hinweis: TransformierenSie die Aufgabenstellung zunächst in eine Frage über eine N(0;1)-verteilte Zufallsvariable.

b) Approximieren Sie die Verteilungsfunktion im entsprechenden Intervall durch eine lineare Funktion.


Moin,

zu a)

hier habe ich keine Ahnung, wie ich die Verteilungsfunktion transformieren soll???


Da bräuchte ich zunächst Input!

Vielen Dank und Gruß!

        
Bezug
Normalverteilung Goldmine: Antwort
Status: (Answer) finished Status 
Date: 17:33 Di 09/10/2018
Author: luis52


> zu a)
>
> hier habe ich keine Ahnung, wie ich die Verteilungsfunktion
> transformieren soll???

Sei [mm] $x_0$ [/mm] der gesuchte Goldanteil. Es muss gelten [mm] $P(X\ge x_0)=0.6$ [/mm] ...

P.S. Du soltest mal die Aufgabenstellung korrigieren. Was bedeutet  [mm]\mu[/mm] = 3m7?


Bezug
                
Bezug
Normalverteilung Goldmine: Frage (überfällig)
Status: (Frage) überfällig Status 
Date: 17:52 Di 09/10/2018
Author: hase-hh

Ok, also gesucht ist [mm] x_0 [/mm] mit P(X [mm] \ge x_0) [/mm] = 0,6

1 - P (X < [mm] x_0 [/mm] ) = 0,6

P(X < [mm] x_0 [/mm] ) = 0,4

[mm] \phi( \bruch{x_0 - \mu}{\sigma}) [/mm] = 0,4

[mm] \phi(\bruch{x_0 -3,7}{0,0081}) [/mm] = 0,4

[mm] \bruch{x_0 -3,7}{0,0081} [/mm] = 0,25   lt. Tabelle

[mm] x_0 [/mm] = 3,702  


Ist das jetzt die Lösung  ???


Und wie bekomme ich jetzt daraus eine lineare Funktion?




Bezug
                        
Bezug
Normalverteilung Goldmine: Fälligkeit abgelaufen
Status: (Statement) No reaction required Status 
Date: 18:20 Do 11/10/2018
Author: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Normalverteilung Goldmine: Antwort
Status: (Answer) finished Status 
Date: 17:52 Di 09/10/2018
Author: Gonozal_IX

Hiho,

zum Thema Transformation: Ist X normalverteilt zu den Parametern [mm] $\mu,\sigma$ [/mm] so ist [mm] $\tilde{X} [/mm] = [mm] \frac{X-\mu}{\sigma}$ [/mm] standardnormalverteilt.

In der Verteilungsfunktion verwendet man das dann wie folgt:
$P(X [mm] \le [/mm] x) = [mm] P\left( \frac{X-\mu}{\sigma} \le \frac{x-\mu}{\sigma}\right) [/mm] = [mm] \Phi\left(\frac{x-\mu}{\sigma}\right)$ [/mm] wobei [mm] $\Phi$ [/mm] die Verteilungsfunktion der Standardnormalverteilung bezeichnet.

Gruß,
Gono

Bezug
                
Bezug
Normalverteilung Goldmine: Frage (beantwortet)
Status: (Question) answered Status 
Date: 18:41 Di 09/10/2018
Author: hase-hh


> Hiho,
>  
> zum Thema Transformation: Ist X normalverteilt zu den
> Parametern [mm]\mu,\sigma[/mm] so ist [mm]\tilde{X} = \frac{X-\mu}{\sigma}[/mm]
> standardnormalverteilt.
>  
> In der Verteilungsfunktion verwendet man das dann wie
> folgt:
>  [mm]P(X \le x) = P\left( \frac{X-\mu}{\sigma} \le \frac{x-\mu}{\sigma}\right) = \Phi\left(\frac{x-\mu}{\sigma}\right)[/mm]
> wobei [mm]\Phi[/mm] die Verteilungsfunktion der
> Standardnormalverteilung bezeichnet.
>  
> Gruß,
>  Gono

Also ist damit die ganz normale Standardisierung gemeint, bzw. dass man hier mit [mm] \bruch{x - \mu}{\sigma } [/mm] rechnet, richtig?

Bezug
                        
Bezug
Normalverteilung Goldmine: Antwort
Status: (Answer) finished Status 
Date: 19:12 Di 09/10/2018
Author: Gonozal_IX

Hiho,

> Also ist damit die ganz normale Standardisierung gemeint,
> bzw. dass man hier mit [mm]\bruch{x - \mu}{\sigma }[/mm] rechnet,
> richtig?

yep.

Gruß,
Gono

Bezug
        
Bezug
Normalverteilung Goldmine: Mitteilung
Status: (Statement) No reaction required Status 
Date: 11:22 Mi 10/10/2018
Author: luis52


> b) Approximieren Sie die Verteilungsfunktion im
> entsprechenden Intervall durch eine lineare Funktion.
>

Mit Verlaub, das ist eine ziemlich daemliche Fragestellung. Z.B. ist $g(x)=1+2x$ eine lineare Funktion ...

Bezug
                
Bezug
Normalverteilung Goldmine: Mitteilung
Status: (Statement) No reaction required Status 
Date: 13:27 Fr 12/10/2018
Author: hase-hh

Ok, das mag sein...

Ich vermute mal, dass hier ab dem gegebenen Prozentsatz  eine Gleichverteilung unterstellt wird / werden soll...

Ich also hierfür  0,6 + [mm] \bruch{x}{b-a} [/mm] mit 3,702  [mm] \le [/mm] x  [mm] \le [/mm] 3,7081

a = 3,702  und  b... [mm] \phi(\bruch{b -3,7}{0,0081}) [/mm] = 3,5

[mm] \bruch{b - 3,7}{0,0081} [/mm] = 1

b = 3,7081  wählen müsste.


Daraus würde ich jetzt folgern,  dass eine solche lineare Funktion (unter der Annahme der Gleichverteilung)  

y = [mm] \bruch{1}{3,7081-3,702}*x [/mm] +0,6

bzw.  y = 163,93*x +0,6  ist.

würde ich mir so denken...











Bezug
View: [ threaded ] | ^ Forum "Uni-Stochastic Theory"  | ^^ all forums  | ^ Tree of Forums  | materials


Alle Foren
Status vor 11h 18m 9. matux MR Agent
UStoc/Kombinatorik Beispiele
Status vor 12h 54m 2. Gonozal_IX
UAnaR1FolgReih/Reihen
Status vor 15h 17m 1. nkln
ZahlTheo/multivariante Polynome Nullste
Status vor 1d 20h 18m 4. matux MR Agent
OpRe/Simplexalgorithmus
Status vor 1d 20h 54m 5. asg
ULinAMat/Beweis von Kern
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]