matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenNotwendiges Kriterium
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Notwendiges Kriterium
Notwendiges Kriterium < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Notwendiges Kriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:49 Sa 14.04.2012
Autor: db60

Auf dieser Seite wird erklärt, was das notwendige Kriterium ist.
[mm] http://de.wikibooks.org/wiki/Mathe_f%C3%BCr_Nicht-Freaks:_Reihe:_Konvergenz_einer_Reihe [/mm]

Es gibt einige Sachen, die ich noch nicht ganz verstanden habe.

Du siehst, dass für die einzige konvergente Reihe [mm] \sum_{n=1}^{\infty}{a_{n}} [/mm] die Folge [mm] \left(a_n\right)_{n\in \mathbb{N}} [/mm] eine Nullfolge ist. Das ist ein ganz allgemeines Konzept. Um dies zu begründen, betrachten wir die Partialsummen [mm] \sum_{k=0}^{n+1}{a_k} [/mm] und [mm] \sum_{k=0}^{n}{a_k} [/mm] einer konvergenten Reihe [mm] \sum_{k=0}^{\infty}{a_k} [/mm] . Da die Reihe konvergiert, müssen die Grenzwerte [mm] \lim_{n \to \infty} {\sum_{k=0}^{n+1}{a_k}} [/mm] und [mm] \lim_{n\to \infty} \sum_{k=0}^{n}{a_k} [/mm] gleich sein. Denn anschaulich gesprochen macht es im Unendlichen keinen Unterschied, ob du ein Folgeglied mehr summierst oder nicht. Wenn die beiden Partialsummen allerdings gegen denselben Grenzwert konvergieren, so muss ihre Differenz gegen 0 konvergieren.

Beachte nun, dass die Differenz der Partialsummen aber gerade [mm] \sum_{k=0}^{n+1}{a_k} [/mm] - [mm] \sum_{k=0}^{n}{a_k} [/mm] = [mm] a_{1}+\cdots+a_{n+1}-a_{1}-\cdots-a_{n} [/mm] = [mm] a_{n+1} [/mm] ist. Das heißt aber nichts anderes, als dass [mm] \left(a_{n+1}\right)_{n\in \mathbb{N}} [/mm] gegen 0 konvergiert. Das halten wir in folgendem Satz fest:
HILLGIALLO pigreco.png
Satz (Trivialkriterium für Reihenkonvergenz):

Ist eine Reihe [mm] \sum_{k=0}^{\infty}{a_{k}} [/mm] mit reellen Gliedern [mm] a_{k} \in \mathbb{R} [/mm] konvergent, so bilden die Folgelieder [mm] a_{k} [/mm] eine Nullfolge, d.h. [mm] \lim_{k\to \infty} {a_k} [/mm] =0 .

Könnte man also sagen, dass jede Reihe deren Glied im unendlichen 0 ergibt das notwendige Kriterium erfüllt. Oder steckt da mehr dahinter ?

        
Bezug
Notwendiges Kriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 01:02 Sa 14.04.2012
Autor: DM08

Das notwendige Kriterium für Reihen wird als "Trivialkriterium" verwenden, um zu zeigen, dass eine Reihe nicht konvergieren kann. Am Besten du verstehst es an einem Beispiel.

[mm] \summe_{n=1}^{\infty}n [/mm]

Was kannst du nun über [mm] $a_n:=n$ [/mm] sagen und was gilt dann für die Reihe ? Oder, falls du es genau haben willst, was kannst du über [mm] \limes_{n\rightarrow\infty}a_n [/mm] sagen ?

Vergiss nur nicht, dass das ein notwendiges Kriterium ist für die Konvergenz einer Reihe und nicht hinreichend.

Ich hoffe, dass ich dir damit helfen konnte.

Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]