matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenNullstellen Quadrat. LN-FKT
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - Nullstellen Quadrat. LN-FKT
Nullstellen Quadrat. LN-FKT < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen Quadrat. LN-FKT: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:08 Do 09.02.2006
Autor: Phoney

Hallo.
Ich möchte die Nullstellen berechnen von

[mm] 2*(ln(x))^2 [/mm] - ln(x) - 1 = 0

Ich gehe nun so vor, dass ich ln(x) = z substituiere

[mm] 2z^2 [/mm] - z -1 =0 geteilt durch 2

[mm] z^2 [/mm] - 0,5z - 0,5

[mm] z_{1,2} [/mm] =  [mm] \bruch{1}{4} \pm \wurzel{\bruch{1}{16}+ \bruch{8}{16}} [/mm]

[mm] z_1 [/mm] = 1
[mm] z_2 [/mm] = -0,5

Und nun möchte ich das Eregbnis haben, muss also eine Rücksubstitution vornehmen, d.h. es bleibt zu lösen:

ln(x) = 1

und

ln(x) = -0,5

So, wie löse ich nun ln(x) = 1 ?

Klar, der ln von der eulerschen zahl ist eins, aber wie komme ich rechnerisch drauf????

Grüße Phoney




        
Bezug
Nullstellen Quadrat. LN-FKT: Umkehrfunktion: e-Funktion
Status: (Antwort) fertig Status 
Datum: 16:16 Do 09.02.2006
Autor: Roadrunner

Hallo Phoney!


Wende auf beide Seiten der Gleichung die Umkehrfunktion des [mm] $\ln(...)$ [/mm] an: die e-Funktion. Damit wird:

[mm] $\ln(x) [/mm] \ = \ 1$

[mm] $e^{\ln(x)} [/mm] \ = \ [mm] e^1$ [/mm]

$x \ = \ e$


Genauso dann mit der anderen Lösung verfahren ...


Gruß vom
Roadrunner


Bezug
                
Bezug
Nullstellen Quadrat. LN-FKT: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:25 Do 09.02.2006
Autor: Phoney

Hi!

dann also so:

ln(x) = -0,5

[mm] e^{ln(x)}= e^{-0,5} [/mm]

x = [mm] e^{-0,5} [/mm]

Wieso darf ich hier die Umkehrfunktion verwenden und warum ist dann der rechte Teil die Lösung? Verstehe ich nicht...

Grüße,
Phoney

Bezug
                        
Bezug
Nullstellen Quadrat. LN-FKT: Antwort
Status: (Antwort) fertig Status 
Datum: 18:26 Do 09.02.2006
Autor: tobi.m

Hallo Phoney,

allgemein hast du die Gleichung ln(x) = y
die Umkehrfunktion von ln ist die e-Funktion, und es ist [mm] f(f(x))^{-1}\mbox{ = x}, [/mm] also hier [mm] e^{ln(x)}\mbox{ = x} [/mm]
du setzt nun ln(x) in die e-Funktion ein (linke Seite) und analog y auf der rechten Seite einsetzen, damit ist die Gleichung [mm] e^{ln(x)} [/mm] = [mm] e^{y} [/mm]
und das ist dann das gesuchte x = [mm] e^{y} [/mm]

Ich hoffe das macht es verständlich.

Gruss Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]