matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungNullstellen Wurzelfunktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differenzialrechnung" - Nullstellen Wurzelfunktion
Nullstellen Wurzelfunktion < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen Wurzelfunktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:26 So 08.05.2011
Autor: matzematze

Aufgabe
Berechne die Nullstellen von: [mm] f(x)=0,99*(97000-1000x)^0.5 [/mm] + 0,01*(99000x [mm] -300)^0,5 [/mm]

hallo, irgendwie bekomme ich es nicht ganz hin. könnt ihr mir eventuell kurz schrittweise erklären, wie ich auf die nullstellen komme, damit ich es mal verstehe und nachvollziehen kann. vielen dank.

wenn ich die ableitung mache bekomme ich:

f'(x) = 0,99*0,5*(-1000)*(97000-1000x)^(-0,5) + 0,01*0,05*99000*(99000x-300)^(-0,5)
= -1000,495*(97000-1000x)^(-0,5)+49,5(99000x-300)^(-0,5)
= 0 (muss Null sein wegen den Nullstellen

darauf folgt:
1000,495*(97000-1000x)^(-0,5)=49,5(99000x-300)^(-0,5)

und wenn die terme unter den bruchstrich nach oben bringe

1000,495(99000x-300)^(0,5)= 49,5(97000-1000x)^(0,5)

das ganze wird durch 49,5 gekürzt und dann folgt:

20,21202*(99000x-300)^(0,5)= (97000-1000x)^(0,5) bzw (a = b, a ist linke seite, b ist rechte seite)

wenn ich jetzt hier die formel [mm] (a-b)^2=a^2-2ab-b^2=0 [/mm] anwende bekomme ich in dem term 2ab nicht die wurzelfunktion raus.

bzw könnt ihr mir sagen wie ich die nullstellen berechnen kann bzw sagen wie das funktioniert.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Nullstellen Wurzelfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:45 So 08.05.2011
Autor: MathePower

Hallo matzematze,

> Berechne die Nullstellen von: [mm]f(x)=0,99*(97000-1000x)^0.5[/mm] +
> 0,01*(99000x [mm]-300)^0,5[/mm]


Nullstellen hat diese Funktion keine.


>  hallo, irgendwie bekomme ich es nicht ganz hin. könnt ihr
> mir eventuell kurz schrittweise erklären, wie ich auf die
> nullstellen komme, damit ich es mal verstehe und
> nachvollziehen kann. vielen dank.
>  
> wenn ich die ableitung mache bekomme ich:
>  
> f'(x) = 0,99*0,5*(-1000)*(97000-1000x)^(-0,5) +
> 0,01*0,05*99000*(99000x-300)^(-0,5)
>  = -1000,495*(97000-1000x)^(-0,5)+49,5(99000x-300)^(-0,5)
>  = 0 (muss Null sein wegen den Nullstellen
>  
> darauf folgt:
>  1000,495*(97000-1000x)^(-0,5)=49,5(99000x-300)^(-0,5)


Hier muss doch stehen:

[mm]\blue{495}*(97000-1000x)^{-0,5}=\blue{495}*(99000x-300)^{-0,5}[/mm]

Kürze nun und quadriere anschließend die Gleichung,
um die Lösung zu ermitteln.


>  
> und wenn die terme unter den bruchstrich nach oben bringe
>  
> 1000,495(99000x-300)^(0,5)= 49,5(97000-1000x)^(0,5)
>  
> das ganze wird durch 49,5 gekürzt und dann folgt:
>  
> 20,21202*(99000x-300)^(0,5)= (97000-1000x)^(0,5) bzw (a =
> b, a ist linke seite, b ist rechte seite)
>  
> wenn ich jetzt hier die formel [mm](a-b)^2=a^2-2ab-b^2=0[/mm]
> anwende bekomme ich in dem term 2ab nicht die
> wurzelfunktion raus.
>  
> bzw könnt ihr mir sagen wie ich die nullstellen berechnen
> kann bzw sagen wie das funktioniert.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt  


Gruss
MathePower

Bezug
                
Bezug
Nullstellen Wurzelfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:07 So 08.05.2011
Autor: matzematze

vielen dank für die schnelle antwort:

nach dem kürzen erhalte ich

$ [mm] \cdot{}(97000-1000x)^{-0,5}=\cdot{}(99000x-300)^{-0,5} [/mm] $

darf ich jetzt einfach links und rechts quadrieren? oder verbieten mehr mathematische regeln dies?
$ [mm] (97000-1000x)^{-1}=(99000x-300)^{-1}$ [/mm]

dann würde ich erhalten:
$ (97000-1000x)=(99000x-300)$
und
$97300x=100000x$
und
x=0,973

ist dies jetzt korrekt gerechnet oder habe ich etwas falsch gemacht?

Bezug
                        
Bezug
Nullstellen Wurzelfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:22 So 08.05.2011
Autor: MathePower

Hallo matzematze,

> vielen dank für die schnelle antwort:
>  
> nach dem kürzen erhalte ich
>  
> [mm]\cdot{}(97000-1000x)^{-0,5}=\cdot{}(99000x-300)^{-0,5}[/mm]
>  
> darf ich jetzt einfach links und rechts quadrieren? oder
> verbieten mehr mathematische regeln dies?


Sicher darfst Du links und rechts quadrieren,
wenn es den Rechenweg erleichtert.

Lösungen, die Du auf diesem Weg erhältst,
sind natürlich mittels der obigen Gleichung zu überprüfen.


>  [mm](97000-1000x)^{-1}=(99000x-300)^{-1}[/mm]
>  
> dann würde ich erhalten:
>  [mm](97000-1000x)=(99000x-300)[/mm]
>  und
> [mm]97300x=100000x[/mm]


Wohl eher: [mm]97300=100000x[/mm]


>  und
>  x=0,973
>  
> ist dies jetzt korrekt gerechnet oder habe ich etwas falsch
> gemacht?


Die Lösung ist so korrekt.

Natürlich mußt Du noch überprüfen,
ob an dieser Stelle die Ableitung verschwindet.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]