matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Nullstellen berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mathe Klassen 8-10" - Nullstellen berechnen
Nullstellen berechnen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen berechnen: Tipp, Rückfrage, Hilfe, Idee
Status: (Frage) beantwortet Status 
Datum: 15:02 So 14.01.2018
Autor: Dom_89

Hallo,

ich habe eine kleine Frage zum Berechnen von Nullstellen und komme aktuell irgendwie nicht mehr weiter.

Gegeben ist der Ausdruck:

[mm] (-1-\lambda)(2-\lambda)(2-\lambda)-(-1-\lambda)*1*1 [/mm]

Diesen Ausdruck habe ich zunächst ausmultipliziert und komme dann auf:

[mm] -\lambda^3+3\lambda^2+\lambda-3 [/mm]

=>Zwischenfrage: Kann man [mm] -\lambda^3 [/mm] so stehen lassen, oder muss ich hier noch zunächst mit -(1) multiplizieren?

Durch Testen habe ich dann die erste Nullstelle mit 1 erraten und möchte nun im nächsten Schritt die Polynomdivision durchführen:

[mm] -\lambda^3+3\lambda^2+\lambda-3 (\lambda-1) [/mm]

Ich erhalte dann:

[mm] -\lambda^2+2\lambda+3 [/mm]

Nun sollte man mit Hilfe der PQ-Formel ja die beiden übrigen Nullstellen bestimmen können (laut Lösung: -1 und 3) - ich befürchte aber, dass ich mich irgendwo verrannt habe, da ich auf diese Werte nicht komme.

Was habe ich falsch gemacht?

Vielen Dank!

        
Bezug
Nullstellen berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:13 So 14.01.2018
Autor: Diophant

Hallo,

> Hallo,

>

> ich habe eine kleine Frage zum Berechnen von Nullstellen
> und komme aktuell irgendwie nicht mehr weiter.

>

> Gegeben ist der Ausdruck:

>

> [mm](-1-\lambda)(2-\lambda)(2-\lambda)-(-1-\lambda)*1*1[/mm]

>

> Diesen Ausdruck habe ich zunächst ausmultipliziert und
> komme dann auf:

>

> [mm]-\lambda^3+3\lambda^2+\lambda-3[/mm]

>

> =>Zwischenfrage: Kann man [mm]-\lambda^3[/mm] so stehen lassen, oder
> muss ich hier noch zunächst mit -(1) multiplizieren?

>

> Durch Testen habe ich dann die erste Nullstelle mit 1
> erraten und möchte nun im nächsten Schritt die
> Polynomdivision durchführen:

>

> [mm]-\lambda^3+3\lambda^2+\lambda-3 (\lambda-1)[/mm]

>

> Ich erhalte dann:

>

> [mm]-\lambda^2+2\lambda+3[/mm]

>

> Nun sollte man mit Hilfe der PQ-Formel ja die beiden
> übrigen Nullstellen bestimmen können (laut Lösung: -1
> und 3) - ich befürchte aber, dass ich mich irgendwo
> verrannt habe, da ich auf diese Werte nicht komme.

>

> Was habe ich falsch gemacht?

Alles viel zu umständlich!

Vereinfachen wir zunächst:

[mm]\left ( -1-\lambda \right )*(2-\lambda)^2-\left(-1-\lambda\right)=0[/mm]

(Man könnte noch mehr vereinfachen, wenn man das Minuszeichen aus dem einen Faktor zieht, aber ich wollte es im Originalzustand belassen).

So: und jetzt einmal scharf ansehen: siehst du den gemeinsamen Faktor [mm] (-1-\lambda) [/mm] ? Den klammern wir aus:

[mm]\left ( -1-\lambda \right )*\left((2-\lambda)^2-1\right)\right)=0[/mm]

Nun die Faktoren gleich Null setzen:

[mm]\begin{aligned} (-1-\lambda)&=0\ \Rightarrow\ \lambda_1=-1\\ \\ \left(2-\lambda\right)^2-1&=0\ \gdw\\ \left(2-\lambda\right)^2&=1 \end{aligned}[/mm]

Und hier darfst du jetzt selbst weiterrechnen. :-)

Merke: Ausmultiplizieren ist beim Lösen algebraischer Gleichungen i.d.R. nicht hilfreich - im Gegenteil!


Gruß, Diophant

Bezug
                
Bezug
Nullstellen berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:55 So 14.01.2018
Autor: Dom_89

Vielen Dank für die Hilfe!!!

Nun hat es auch alles prima funktioniert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]