matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Nullstellen von Parabeln
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe Klassen 8-10" - Nullstellen von Parabeln
Nullstellen von Parabeln < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen von Parabeln: Lösungsweg beschreiben
Status: (Frage) beantwortet Status 
Datum: 10:22 Mi 21.03.2012
Autor: herrrossie

Aufgabe
x=sqrt(6-x)-9  bestimme die Lösungsmenge der Gleichung L=(-5)

Laut Mathelehrer kommt -5 heraus. Ich kann nur den Lösungsweg nicht nachvollziehen.
Kann mir jemand den Lösungsweg erklären.
Vielen Dank im Voraus.

ich komme auf den Ansatz

X²-2x+87=0
damit komme ich nicht auf die Lösung

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Nullstellen von Parabeln: Antwort
Status: (Antwort) fertig Status 
Datum: 10:37 Mi 21.03.2012
Autor: angela.h.b.


> [mm] x=\sqrt{6-x}-9 [/mm]  bestimme die Lösungsmenge der Gleichung
> L=(-5)
>  Laut Mathelehrer kommt -5 heraus. Ich kann nur den
> Lösungsweg nicht nachvollziehen.

Hallo,

[willkommenmr].

Da gibt's nichts nachzuvollziehen, denn wenn man mal x=-5 einsetzt, dann merkt man schnell, daß nicht -5 herauskommt:

[mm] \wurzel{6-(-5)}-9=\wurzel{11}-9\approx [/mm] -5.7

Also ist x=-5 keine Lösung.

>  Kann mir jemand den Lösungsweg erklären.
>  Vielen Dank im Voraus.
>  
> ich komme auf den Ansatz
>  
> X²-2x+87=0

Wo kommt diese Gleichung her?
Mach das mal ausführlich vor.

LG Angela



Bezug
                
Bezug
Nullstellen von Parabeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:55 Mi 21.03.2012
Autor: herrrossie

Sorry ich habe eine 2 vergessen vor dem X

x=sqrt(6-2x)-9

Bezug
                        
Bezug
Nullstellen von Parabeln: Antwort
Status: (Antwort) fertig Status 
Datum: 11:12 Mi 21.03.2012
Autor: angela.h.b.


> Sorry ich habe eine 2 vergessen vor dem X
>  
> x=sqrt(6-2x)-9

Hallo,

dann sieht die Sache natürlich anders aus, und wir können uns schnell von der Richtigkeit der Lösung überzueugen:

[mm] \wurzel{6-2*(-5)}-9=\wurzel{16}-9=4-9=-5. [/mm]

Alldings ahne ich bzgl. des von Dir eingeschlagenen Rechenweges Allerschlimmstes - ich will wohl lieber gar nicht ganu wissen, was Du getan hast...

So geht's:

x=sqrt(6-2x)-9
<==>
[mm] x+9=\wurzel{6-2x} [/mm]
nun quadrieren:
==>
[mm] (x+9)^2=6-2x [/mm]
<==>
1.binomische Formel:
[mm] x^2+18x+81=6-2x /qquad|-6\qquad|+2x [/mm]
<==>
[mm] x^2+20x+75=0 [/mm]

Löst Du diese quadratische Gleichung, so bekommst Du zwei Lösungen.
Dies sind die möglichen Lösungen Deiner Ausgangsgleichung, und Du mußt gucken, ob sie passen. Die passenden sind halt die Lösungen.

LG Angela




Bezug
                                
Bezug
Nullstellen von Parabeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:37 Mi 21.03.2012
Autor: herrrossie

Vielen dank. Mein fehler war die fehlende Klammer bei (x+9)²
verstehe nicht warum ich da die klammer setzen muss

Bezug
                                        
Bezug
Nullstellen von Parabeln: Antwort
Status: (Antwort) fertig Status 
Datum: 11:44 Mi 21.03.2012
Autor: angela.h.b.


> Vielen dank. Mein fehler war die fehlende Klammer bei
> (x+9)²
>  verstehe nicht warum ich da die klammer setzen muss

Hallo,

Du hattest ja

[mm] x+9=\wurzel{6-2x}. [/mm]

Nun wird quadriert.
Beide Seiten werden komplett quadriert, und weil Du beide Seiten komplett quadrierst, kommen da Klammern drum.

Es folgt

[mm] (x+9)^2=(\wurzel{6-2x})^2. [/mm]

Wenn Du Dir nun klarmachst, daß [mm] (x+9)^2 [/mm] bedeutet (x+9)*(x+9), wirst Du schnell davon abkommen, daß beim Quadrieren von x+9 die Lösung [mm] x^2+81 [/mm] ist. (Auch kleine Experimente, bei denen Du für x irgendeine Zahl einsetzt, werden Dich überzeugen.)
Das Stichwort "binomische Formeln" hatte ich bereits in meiner Antwort in den Raum geworfen, und Du tätest gut daran, Dich mit diesen genauestens bekannt zu machen.

LG Angela


Bezug
                                                
Bezug
Nullstellen von Parabeln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:49 Mi 21.03.2012
Autor: herrrossie

Ich muss zugeben du hast Recht.
Der Mathelehrer meiner tochter hat das Binom so gut versteckt,
dass ich es nicht geshen habe.
x= sqrt(6-2x)-9
war in der Form für mich nicht zu erkennen.
mein Abbi ist auch schon ca. 30 jahre her

Bezug
        
Bezug
Nullstellen von Parabeln: Antwort
Status: (Antwort) fertig Status 
Datum: 11:04 Mi 21.03.2012
Autor: M.Rex

Hallo

Mit der 2 passt die -5.


[mm] x=\sqrt{6-x}-9 [/mm]
[mm] \Leftrightarrow x+9=\sqrt{6-x} [/mm]
[mm] \Rightarrow (x+9)^{2}=6-x [/mm]
Den Rest schaffst du jetzt sicherlich alleine.

Mache unbedingt die Probe, da das Quadrieren keine Äquivalenzumformung ist, dort können zusätzliche "Scheinlösungen" entstehen.

Marius


Bezug
                
Bezug
Nullstellen von Parabeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:22 Mi 21.03.2012
Autor: herrrossie

Sorry ich bin zu unwissend.
ersten warum eine Klammer um (x+9)² und nicht x² +81

außerdem komme ich immer noch nicht auf  -5

Bezug
                        
Bezug
Nullstellen von Parabeln: Antwort
Status: (Antwort) fertig Status 
Datum: 11:26 Mi 21.03.2012
Autor: Diophant

Hallo,

> Sorry ich bin zu unwissend.
> ersten warum eine Klammer um (x+9)² und nicht x² +81

weil man auf beiden Seiten quadriert, um die Wurzel zu eliminieren. Und weil man eine Summe mit gleich nochmal welcher Formel quadrieren muss?

> außerdem komme ich immer noch nicht auf -5

Wenn du richtig rechnest, muss aber genau das herauskommen. Die korrekte Rechnung wurde doch schon angegeben.

Gruß, Diophant

Bezug
                        
Bezug
Nullstellen von Parabeln: Antwort
Status: (Antwort) fertig Status 
Datum: 11:43 Mi 21.03.2012
Autor: fred97


> Sorry ich bin zu unwissend.
>  ersten warum eine Klammer um (x+9)² und nicht x² +81

Die Gruppe der Quadrieren-ist-linear-Meinung-Haber ist riesengroß.

Du gehörst zu dieser Gruppe. Herr von und zu Binomi gehört nicht dazu !

FRED


>  
> außerdem komme ich immer noch nicht auf  -5


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]