matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungNullstellenberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differenzialrechnung" - Nullstellenberechnung
Nullstellenberechnung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellenberechnung: ableitungsfunktion nullstelle
Status: (Frage) beantwortet Status 
Datum: 19:18 So 04.10.2009
Autor: huihu

hallo,

ich habe die aufgabe die extrema ( minimum, maximum ) einer stammfunktion zu bestimmen
als erstes habe ich die stammfunktion:

x ^5-x+1

Ableitung: [mm] 5x^4 [/mm]   -1

ich habe gedacht erst mal die nullstellen der ableitungsfunktion zu bestimmen wäre sinnvoll weil man so wüsste wo die steigung der stammfunktion null ist

aber bei den nullstellen bekommen ich durch die lösungsformel

die lösung

-wurzel (0,8)
:2
und +wurzel (0,8)
:2

aber ist das realistisch??

ich meine weil die extrema kann man so ja nur näherungsweise bestimmen oder

was meint ihr

danke
ich habe diese frage in einem anderen forum gestellt

        
Bezug
Nullstellenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:29 So 04.10.2009
Autor: abakus


> hallo,
>  
> ich habe die aufgabe die extrema ( minimum, maximum ) einer
> stammfunktion zu bestimmen
> als erstes habe ich die stammfunktion:
>  
> x ^5-x+1
>  
> Ableitung: [mm]5x^4[/mm]   -1
>  
> ich habe gedacht erst mal die nullstellen der
> ableitungsfunktion zu bestimmen wäre sinnvoll weil man so
> wüsste wo die steigung der stammfunktion null ist

Hallo,
bis hierher ist es richtig.
Nullstellen davon:
[mm] 5x^4-1=0 [/mm]
[mm] 5x^4=1 [/mm]
[mm] x^4=0,2 [/mm]
[mm] x=\pm \wurzel[4]{0,2} [/mm]

>
> aber bei den nullstellen bekommen ich durch die
> lösungsformel
>  
> die lösung
>
> -wurzel (0,8)
>  :2
>  und +wurzel (0,8)
>  :2
>  
> aber ist das realistisch??
>  
> ich meine weil die extrema kann man so ja nur
> näherungsweise bestimmen oder

Abgesehen davon, dass du dich im letzten Schritt böse verrechnet hast:
Nein, die Extremstellen kann man genau bestimmen. [mm] \wurzel[4]{0,2} [/mm] IST ein genauer Wert.
Jeder Versuch, das irgendwie mit Kommazahlen auszudrücken, verschlechtert nur das Ergebnis.
Gruß Abakus

>
> was meint ihr
>
> danke
> ich habe diese frage in einem anderen forum gestellt


Bezug
                
Bezug
Nullstellenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:43 So 04.10.2009
Autor: huihu

also mal ganz genau wenn ich [mm] x^4 [/mm] habe
könnte ich dann substitution anwenden??

Bezug
                        
Bezug
Nullstellenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:48 So 04.10.2009
Autor: Disap


> also mal ganz genau wenn ich [mm]x^4[/mm] habe
> könnte ich dann substitution anwenden??

Ja.


Bezug
                                
Bezug
Nullstellenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:51 So 04.10.2009
Autor: huihu

aber irgentwie komme ich dann für die variable von [mm] x^2 [/mm] auf wurzel von (4:5) :2

was macht man dann??

Bezug
                                        
Bezug
Nullstellenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:57 So 04.10.2009
Autor: Disap

[mm] 5x^4 [/mm] = 1 war ursprünglich zu lösen,

Substitutiere [mm] z:=x^2 [/mm]

Dann löse

[mm] 5z^2 [/mm] = 1

bzw

[mm] z^2 [/mm] = 1/5

=> [mm] z_{1,2} [/mm] = [mm] \sqrt{1/5} [/mm]

Da aber gerade x = [mm] \sqrt{z} [/mm] galt (siehe oben), musst du noch einmal die Wurzel ziehen

[mm] x_{1,2} [/mm] = [mm] \sqrt{z_{1,2}} [/mm] = [mm] \sqrt{ \sqrt{1/5}} [/mm] = [mm] \pm 0.2^{1/4}. [/mm] Wie du es auch heraushattest.

Ich bin mir nicht sicher, ob das deine Frage beantwortet.

Kannst du noch mal genauer sagen, was noch unklar ist?

Beste Grüße
Disap



Bezug
                                                
Bezug
Nullstellenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:03 So 04.10.2009
Autor: huihu

also ich hab versucht das über die lösungsformel zu machen

das ist zwar umständlicher nehm ich an aber das ist mir zuerst eingefallen

ich komme darauf , dass [mm] x^2 [/mm] imgrunde wurzel von ,08
durch 2 ist und x imgrunde noch mal die wuryel davon stimmt das?

Bezug
                                                        
Bezug
Nullstellenberechnung: konkret?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:07 So 04.10.2009
Autor: Disap


> also ich hab versucht das über die lösungsformel zu
> machen

Redest du hier von der PQ-Formel?

> das ist zwar umständlicher nehm ich an aber das ist mir
> zuerst eingefallen

Allerdings. Aber es muss dasselbe herauskommen.

> ich komme darauf , dass [mm]x^2[/mm] imgrunde wurzel von ,08
>  durch 2 ist und x imgrunde noch mal die wuryel davon
> stimmt das?

Wie hast du die Werte berechnet? Wenn du etwas anderes herausbekommst als die Ergebnisse, die hier bereits ein paar Mal gepostet wurden, hast du etwas falsch gemacht.

Bezug
                                                                
Bezug
Nullstellenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:16 So 04.10.2009
Autor: huihu

ich habe folgende formel:

-b +oder- wurzel [mm] (b^2-4ac) [/mm]

und vorher substitution

Bezug
                                                                        
Bezug
Nullstellenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:28 So 04.10.2009
Autor: Steffi21

Hallo, die a-b-c-Formel ist ja wohl absolut nicht notwendig, Steffi

Bezug
                                                        
Bezug
Nullstellenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:25 So 04.10.2009
Autor: Steffi21

Hallo, bleiben wir doch bei der p-q-Formel, was ja eigentlich überhaupt nicht notwendig ist, du möchtest lösen

[mm] x^{4}-0,2=0 [/mm]

Sustitution: [mm] z:=x^{2} [/mm]

[mm] z^{2}-0,2=0 [/mm] mit p=0 und q=-0,2

[mm] z_1_2=0\pm\wurzel{0-(-0,2)} [/mm]

[mm] z_1_2=\pm\wurzel{0,2} [/mm]

jetzt aber nicht die Rücksustitution vergessen, die a-b-c-Formel kannst du natürlich auch nutzen, du kannst auch von Berlin nach Potsdam über München fahren,

Steffi

Bezug
                                                                
Bezug
Nullstellenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:29 So 04.10.2009
Autor: huihu

also eigentlich habe ich :

[mm] 5x^4- [/mm] 1
und jetzt brauche ich die nullstellen dazu
naja und meine ergebnisse sind sehr eigenartig..

Bezug
                                                                        
Bezug
Nullstellenberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:33 So 04.10.2009
Autor: huihu

ganz wichtig:
ich habe die pq formel noch nie verwendet ich kenne sie leider nicht


Bezug
                                                                                
Bezug
Nullstellenberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:35 So 04.10.2009
Autor: Steffi21

Hallo, du hast sie vergessen, dann ist es in der 11 aber zwingend notwendig, sie WIEDER zu lernen!!!! Steffi

Bezug
                                                                        
Bezug
Nullstellenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:34 So 04.10.2009
Autor: Steffi21

Hallo, klar

[mm] 5*x^{4}-1=0 [/mm] Division durch 5

[mm] x^{4}-0,2=0 [/mm]

deine Ergebnisse sind in keiner Weise "sehr eigenartig"!!!!!!!

Steffi





Bezug
                                                                                
Bezug
Nullstellenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:37 So 04.10.2009
Autor: huihu

heißt das ich habe jetzt eine stunde gebraucht um herauszufinden das meine ergebnisse stimmen :))
nicht im ernst..oh man danke jedenfalls

Bezug
                                                                                        
Bezug
Nullstellenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:40 So 04.10.2009
Autor: Steffi21

Hallo, abakus hat in der 1. Antwort dir bereits gesgat [mm] x_1_2=\pm \wurzel[4]{0,2}, [/mm] was ich bei dir leider noch nicht gelesen habe, Steffi

Bezug
                                                                                                
Bezug
Nullstellenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:45 So 04.10.2009
Autor: huihu

ja aber das ist dasselbe wie
die wurzel aus (wurzel(4:5):2) ich habe das mit einer anderen formel gelernt..

Bezug
                                                                                                        
Bezug
Nullstellenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:57 So 04.10.2009
Autor: Steffi21

Hallo,

[mm] \bruch{1}{2}\wurzel{\bruch{4}{5}}\not=\pm\wurzel[4]{0,2} [/mm]

Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]