matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentialgleichungenNum. Integration einer ODE
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differentialgleichungen" - Num. Integration einer ODE
Num. Integration einer ODE < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Num. Integration einer ODE: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:33 Sa 21.02.2009
Autor: Centaur

Aufgabe
Die ODE

$u''(z)=-c*u'(z) - u(z)(1-u(z))$

mit Anfangs- und Randwerten $u(-10)=1, u(10)=0, u'(-10)=0$ und $u'(10)=0$ soll numerisch integriert werden.

Ich arbeite gerade an einem Problem. Und zwar beschäftige ich mich gerade mit der (partiellen) Fisher's Gleichung [mm] $u_{t} [/mm] = [mm] u_{xx} [/mm] + u(1-u)$ (http://en.wikipedia.org/wiki/Fisher%27s_equation) mit den Randbedingungen:

[mm] $u(-\infty)=1$ [/mm] und [mm] $u(\infty)=0$ [/mm]

So wenn ich hier nun ein bewegtes Koordinatensystem der Form $z=x-ct$ einführe, komme ich auf obige ODE. Wenn ich die Randbedingung nun richtig "übersetzt" habe, erhalte ich nun allerdings vier Bedingungen: zwei Rand- und zwei Anfangsbedingungen. (10 und -10 stehen hier jetzt zunächst einmal für eine große Zahl, da ich ja numerisch nur mit endlichen Zahlen arbeiten kann.)

Nun bin ich aber ein wenig ratlos, da ich das Gefühl habe zu viele Bedingungen zu haben. Ich hab schon versucht die beiden Bedingungen an die Ableitung wegzulassen und dann die ODE mit der "shooting method" (http://en.wikipedia.org/wiki/Shooting_method)zu lösen, nur leider erhalte ich dann eine Lösung, die nicht zufällig auch die anderen Bedingungen erfüllt.

Hat jemand eine Idee, worin mein Problem liegen könnte? Entweder gibt es für Probleme von dieser Art spezielle Methoden, die ich nicht kenne und bislang auch nicht im Internet finden konnte oder das Überführen von unendlichen Randbedinungen zu endlichen macht viel größere Probleme als ich vermutet habe.

Ich würde mich über jeden noch so kleinen Tipp sehr freuen!

------------------------------------------

PS: Ich habe diese Frage in keinem anderen Forum gestellt!

        
Bezug
Num. Integration einer ODE: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Mi 25.02.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]