matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentialgleichungenNummerierung der Unbekannten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differentialgleichungen" - Nummerierung der Unbekannten
Nummerierung der Unbekannten < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nummerierung der Unbekannten: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:19 Sa 16.05.2009
Autor: jumape

Aufgabe
Die 2D Poissongleichung mit Dirichlet Randbedingungen im EInheitsquadrat,
[mm] -\Deltau(x,y)=f(x,y) [/mm] im [mm] \Omega=(0,1)², [/mm] u(x,y)=g(x,y) auf [mm] \Gamma=[0,1]² [/mm] \ [mm] \Omega [/mm] sei auf folgende weise diskretisiert:
[mm] \Delta_hu(x,y)=\bruch{1}{h²}[u(x-h,y)+u(x+h,y)+u(x,y-h)+u(x,y+h)-4u(x,y)] [/mm]
mit Maschenweite h=1/n in jeder Raumrichtung. Nach Elimination der Randbedingungen ergibt sich ein lineares Gleichungssystem mit N=(n-1)² Unbekannten. Bestimmen Sie die zugehörige Matrix bei schachbrettartiger Nummerierung für ungerades n.

  

Als Tip ist angegeben das Rechengebiet aufzuspalten:
[mm] \Omega_h=\Omega_h^{gg}\cup\Omega_h^{uu}\cup\Omega_h^{gu}\cup\Omega_h^{ug} [/mm]

wobei uu für die felder steht die bezüglich x und y eine ungerade nummerierung haben ug für die die bezüglich x ungerade und bezüglich y gerade nummeriert sind,...

Die Menge der roten, bzw. schwarzen Felder ist dann:
[mm] \Omega_h^{rot}=\Omega_h^{gg}\cup\Omega_h^{uu} [/mm] und [mm] \Omega_h^{schwarz}=\Omega_h^{gu}\cup\Omega_h^{ug} [/mm]

Schachbrettaartige Nummerierung heißt:
4 9 5
7 3 8
1 6 2

In dieser Reihenfolge werden die Gitterpunkte durchlaufen, also ist der Vektor u der an die Matrix multipliziert wird für ein Feld mit 9 Punkten:
[mm] u=(u_{11},u_{13},u_{22},u_{31},u_{33},u_{12},u_{21},u_{23},u_{32}) [/mm]

Da die Diskretisierung immer nur auf den gegenwärtigen Punkt und auf Felder zurückgreift die eine andere FArbe haben, und erst alle Felder in der einen und dann die in der anderen Farbe drankommen in u, ist die Matrix eine Blockmatrix mit 4 Blöcken die oben links und unten rechts jeweils die Diagonalmatrix mmit -4 auf der Diagonalen ist und von der ich aber leider noch nicht weiß was oben rechts und unten links passiert. Es sind wohl Bandmatrizen mit Bandbreite 5. Die Diagonale und die beiden außen haben nur einsen die beiden eingeschlossenen sind einmal eins dann dreimal 0... Jedenfalls ist das bei meinem Beispiel mit 16 Feldern so. Ich habe aber keine Ahnung wie ich das auf irgendwelche Kenntnisse fundieren kann und was das für ein System sein soll.

Es wäre nett wenn mir jemand helfen könnte.

Mfg jumape

        
Bezug
Nummerierung der Unbekannten: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Mi 20.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]