matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenOber- und Unterintegral
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionen" - Ober- und Unterintegral
Ober- und Unterintegral < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ober- und Unterintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:43 Sa 23.06.2007
Autor: Antiprofi

Aufgabe
Beweisen Sie: Für f : [mm] \IR^n \to \IR [/mm] gilt

     [mm] \underline{\integral}{f(x) dx} [/mm] = sup { [mm] \integral_{\IR^n}{\phi(x) dx}; \phi \in C_c(\IR^n), \phi \le{f} [/mm] },

     [mm] \overline{\integral}{f(x) dx} [/mm] = inf { [mm] \integral_{\IR^n}{\xi(x) dx}; \xi \in C_c(\IR^n), \xi \ge{f} [/mm] } .

Hinweis: Wegen der völligen Analogie genügt es, die Formel für das Ober- oder das
Unterintegral herzuleiten.

Hallo,

in der Vorlesung haben wir das Ober- und das Unterintegral schon für die Treppenfunktion in genau der selben Form bestimmt, haben da aber nichts hergelitten. Komm nun einfavh nicht drauf, wie ich vorgehen soll. Kann mir da jemand helfen?

Schon jetzt Danke!

        
Bezug
Ober- und Unterintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 15:16 Sa 23.06.2007
Autor: generation...x

Ich würde die Integrale rechts durch Ober- bzw. Unterintegrale ersetzen (das geht ja, wenn die Funktionen integrierbar sind) und dann mal die Differenz betrachten...

Bezug
                
Bezug
Ober- und Unterintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:15 So 24.06.2007
Autor: Antiprofi

Hallo,

Wie genau  meinst du das? Wie habe ich denn dann das Supremum bzw. Infimum hergelitten? Denn das ist ja in der Aufgabe gefragt. Bitte erklär doch mal genauer, was du meinst.

Bezug
                        
Bezug
Ober- und Unterintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 13:23 So 24.06.2007
Autor: generation...x

Wenn eine Funktion int.bar ist, dann stimmen Ober- und Unterintegral gerade mit dem Integral überein. Das war ja die Definition von int.bar. Also kannst du umgekehrt die Integrale durch Ober- bzw. Unterintegrale ersetzen.
Dann könntest du dir überlegen, was passiert, wenn man die beiden Seiten der Gleichung auf eine Seite bringt. (Es entsteht eine Differenz - wie verhält sie sich? Geht sie gegen 0? Warum?)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]