matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisOberfläche eines Hyperboloids?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Oberfläche eines Hyperboloids?
Oberfläche eines Hyperboloids? < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Oberfläche eines Hyperboloids?: Lösungsüberprüfung
Status: (Frage) beantwortet Status 
Datum: 14:07 Di 08.03.2005
Autor: OBdA-trivial

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo Leute,
es geht um die Berechnung der Oberfläche eines Hyperboloids mit der Vorgabe [mm] x^{2} + y^{2} < 1 [/mm] und [mm] z = x * y [/mm] ! Ich habe das ganze über die Parametrisierung [mm] (u,v) \right\} \to (u,v,u*v) [/mm] und anschließende Transformation  mittels [mm] (r,\varphi) \right\} \to (r * \cos \varphi, r * \sin \varphi) [/mm] gelöst. Probleme hat mir bereitet, die stetige Differenzierbarkeit bei der Umkehrfunktion der Transformationsfunktion zu zeigen(die Trafo-Funktion muss ja ein Diffeomorphismus sein). Außerdem macht mich meine Lösung ein wenig stutzig: [mm] Vol_2 = \bruch{2}{3} * \pi * ( \wurzel{8} - 1) [/mm] !
Könnte das von euch mal jemand überprüfen?

Mit parametrisierten Grüßen
Ralf

        
Bezug
Oberfläche eines Hyperboloids?: Bestätigung
Status: (Antwort) fertig Status 
Datum: 20:00 Mi 09.03.2005
Autor: MathePower

Hallo,

ich habe das nachgerechnet und das Ergebnis stimmt.

Ich habe die folgende Formel für die Oberfläche benutzt:

[mm]A_{0} \; = \;\int\limits_{0}^{2\pi } {\int\limits_{0}^{1} {\sqrt {r^{2} \; + \;r^{2} \;f_{r}^{2} \; + \;f_\varphi ^{2} } } } \;dr\;d\varphi [/mm]

Für die Berechung der Ableitungen [mm]f_{r}[/mm] und [mm]f_{\varphi}[/mm] verwende folgende Funktion:

[mm]f\left( {r,\;\varphi } \right)\; = \;f\left( {x\left( {r,\;\varphi } \right),\;y\left( {r,\;\varphi } \right)} \right)[/mm]

Leite dann diese Gleichung nach [mm]r[/mm] bzw. [mm]\varphi[/mm] ab.

Gruß
MathePower


Bezug
                
Bezug
Oberfläche eines Hyperboloids?: Dankeschön!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:26 Do 10.03.2005
Autor: OBdA-trivial

Wunderbar. Dankeschön! Deine Formel hilft mir sicherlich bei der Überprüfung nur rechnen sollte ich das ganze auch mittels Parametrisierung und Transformationssatz können, denn darum dreht sich das Thema bei Lebesgue und Co in AnaIII. Ich werd mal schauen wie du auf die genannte Formel für das Integral kommst. Vielleicht hilft mir das ja auch bei der Klausur schnell eine Lösung zu finden. Im Endeffekt hast du doch nur statt Parametrisierung eine Funktion als Darstellung des Hyperboloids gewählt und dort eine Transformation durchgeführt, richtig???
Gruß Ralf

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]