matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungOberfläche eines Zylinders
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra / Vektorrechnung" - Oberfläche eines Zylinders
Oberfläche eines Zylinders < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Oberfläche eines Zylinders: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 10:42 Mo 21.03.2005
Autor: Semi85

Hallo.
Ich habe eine kurze Frage zu einer Aufgabe:

Sei [mm] g_{t}: \vektor{x \\ y\\z}= \vektor{xsin(t)\\ cos(t)\\0}+\lambda\vektor{0\\ 0\\1} [/mm] für festes t [mm] \in \IR [/mm]

[mm] \bigcup_{t \in\IR}g_{t} [/mm] schließt mit den Ebenen [mm] E_{1}: [/mm] z=-1, [mm] E_{2}: [/mm] z=1 einen Zylinder ein. Wie groß ist dessen Oberfläche?

Nun ist ja [mm] O_{Zylinder}=2\pi r^{2}+2h\pir [/mm]

Jetzt soll r=1 und h=2 sein und man erhält:
[mm] O_{Zylinder}=2\pi+4\pi=6\pi [/mm]

Ich verstehe nicht, wie ich an den Radius und die Höhe komme? Es heißt, dass man das sehen oder ablesen kann. Aber ich kann nix erkennen.
Ich habe diese Frage in keinem anderen Forum gestellt.

Gruß,
Semi

        
Bezug
Oberfläche eines Zylinders: Antwort bzw. Hilfe
Status: (Antwort) fertig Status 
Datum: 12:03 Mo 21.03.2005
Autor: Zwerglein

Hi, Semi,

> Hallo.
>  Ich habe eine kurze Frage zu einer Aufgabe:
>  
> Sei [mm]g_{t}: \vektor{x \\ y\\z}= \vektor{xsin(t)\\ cos(t)\\0}+\lambda\vektor{0\\ 0\\1}[/mm]
> für festes t [mm]\in \IR [/mm]

Das x bei sin(t) ist sicher nur ein Tippfehler, stimmt's?

>  
> [mm]\bigcup_{t \in\IR}g_{t}[/mm] schließt mit den Ebenen [mm]E_{1}:[/mm]
> z=-1, [mm]E_{2}:[/mm] z=1 einen Zylinder ein. Wie groß ist dessen
> Oberfläche?
>  
> Nun ist ja [mm]O_{Zylinder}=2\pi r^{2}+2h\pir [/mm]
>  
> Jetzt soll r=1 und h=2 sein und man erhält:
>  [mm]O_{Zylinder}=2\pi+4\pi=6\pi [/mm]
>  
> Ich verstehe nicht, wie ich an den Radius und die Höhe
> komme? Es heißt, dass man das sehen oder ablesen kann. Aber
> ich kann nix erkennen.

Die Parameterform eines Kreises in der xy-Koordinatenebene heißt:
[mm] \vec{x} [/mm] = [mm] \vektor{r*sin(t) \\ r*cos(t) \\ 0} [/mm]
r ist der Radius des Kreises. Bei Dir: kein r zu sehen, also: r=1.

Die Höhe des Zylinders ist gleichzeitig der Abstand der Ebenen. Nun liegt die eine "um 1 nach unten versetzt", die andere "um 1 nach oben versetzt" bezüglich der xy-Ebene. Also: Die beiden Ebenen haben den Abstand 2 voneinander!
  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]