matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenOberflächenberechnung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - Oberflächenberechnung
Oberflächenberechnung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Oberflächenberechnung: Rotationskörper
Status: (Frage) beantwortet Status 
Datum: 15:18 Do 07.05.2009
Autor: sunmoonlight

Aufgabe
Das Ellipsoid mit Mittelpunkt (0,0,0) und den Achsenlängen 5,3,3 kann durch die Gleichung [mm] \bruch{x^2}{25}+\bruch{y^2}{9}+\bruch{z^2}{9}=1 [/mm] beschrieben werden.
Berechnen Sie die Oberfläche dieses Ellipsoids, indem Sie es als Rotationskörper auffassen.

Um diese Aufgabe zu lösen wählte ich die erste guldin'sche Regel.
Da mir nur der Funktionsgraph auf der xy-Achse interessiert lasse ich den z-Ausdruck weg, weil die Länge der z und y-Achse gleich sonst wäre es nich rotationssymmetrisch. Ich forme f(x) nach y um und komme auf folgenden Ausdruck: [mm] f(x)=\bruch{3}{5}*\wurzel{5^2-x^2} [/mm]

Die guldin'sche Regel lautet:
[mm] A=2\pi\integral_{-a}^{a}{f(x)*\wurzel{1+[f'(x)]^2}dx} [/mm]

Jetzt leite ich f(x) nach x ab und komme auf folgenden Ausdruck: [mm] f'(x)=-\bruch{3}{5}\bruch{x}{\wurzel{25-x^2}} [/mm]

Einsetzen in die guldin'sche Formel:
[mm] A=2\pi\integral_{-a}^{a}{\bruch{3}{5}*\wurzel{5^2-x^2}*\wurzel{1+[-\bruch{3}{5}\bruch{x}{\wurzel{25-x^2}}]^2}dx} [/mm]

Welche Technik muss ich anwenden um diesen Ausdruck integrieren zu können? Ist dieser Lösungsansatz überhaupt richtig?

Danke für eure Hilfe!
mfg
sunmoonlight



        
Bezug
Oberflächenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:12 Do 07.05.2009
Autor: MathePower

Hallo sunmoonlight,

> Das Ellipsoid mit Mittelpunkt (0,0,0) und den Achsenlängen
> 5,3,3 kann durch die Gleichung
> [mm]\bruch{x^2}{25}+\bruch{y^2}{9}+\bruch{z^2}{9}=1[/mm] beschrieben
> werden.
>  Berechnen Sie die Oberfläche dieses Ellipsoids, indem Sie
> es als Rotationskörper auffassen.
>  Um diese Aufgabe zu lösen wählte ich die erste guldin'sche
> Regel.
>  Da mir nur der Funktionsgraph auf der xy-Achse
> interessiert lasse ich den z-Ausdruck weg, weil die Länge
> der z und y-Achse gleich sonst wäre es nich
> rotationssymmetrisch. Ich forme f(x) nach y um und komme
> auf folgenden Ausdruck: [mm]f(x)=\bruch{3}{5}*\wurzel{5^2-x^2}[/mm]
>  
> Die guldin'sche Regel lautet:
> [mm]A=2\pi\integral_{-a}^{a}{f(x)*\wurzel{1+[f'(x)]^2}dx}[/mm]
>  
> Jetzt leite ich f(x) nach x ab und komme auf folgenden
> Ausdruck: [mm]f'(x)=-\bruch{3}{5}\bruch{x}{\wurzel{25-x^2}}[/mm]
>  
> Einsetzen in die guldin'sche Formel:
>  
> [mm]A=2\pi\integral_{-a}^{a}{\bruch{3}{5}*\wurzel{5^2-x^2}*\wurzel{1+[-\bruch{3}{5}\bruch{x}{\wurzel{25-x^2}}]^2}dx}[/mm]
>  
> Welche Technik muss ich anwenden um diesen Ausdruck
> integrieren zu können? Ist dieser Lösungsansatz überhaupt
> richtig?


Den Ausdruck unter der Wurzel kannst Du in der Form [mm]\bruch{Z}{N}[/mm] schreiben.

Dann läßt sich der Integrand einfacher schreiben.

Um dieses Integral dann zu lösen, verwendest Du eine bestimmte Substitution.

  

> Danke für eure Hilfe!
>  mfg
>  sunmoonlight
>  
>  


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]