matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesOberflächenintegral
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Sonstiges" - Oberflächenintegral
Oberflächenintegral < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Oberflächenintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:03 Di 31.01.2012
Autor: thadod

Guten abend alle zusammen.

Aufgabe:

Berechne das Oberflächenintegral der skalaren Funktion [mm] f:\IR^3 \to \IR [/mm] über die Oberfläche O [mm] \subset \IR^3 [/mm]

Es ist [mm] f:(x,y,z)\to x^2+y^2 [/mm]
O sei die Halbsphäre vom Radius r, deren Grundlinie in der xy - Ebene liegt.

Mir ist nun leider unklar, wie ich ein Oberflächenintegral einer skalaren Funktion über eine Oberfläche berechnen kann.

Was mir klar ist:

die Oberfläche ist ja eine Halbsphäre. Wir verwenden also scheinbar Kugelkoordinaten.

Und die parametrisierung von Kugelkoordinaten ist ja:

[mm] \Phi(\theta, \phi)=\pmat{ r sin\theta cos\phi \\ r\sin\theta sin\phi \\ r cos\theta } [/mm]

allgemein weiß ich zwar, dass [mm] x^2+y^2 [/mm] einen Kreis beschreibt, aber es ist ja nur [mm] f(x,y,z)=x^2+y^2 [/mm]

wie also muss ich hier ran gehen ?

mfg und vielen vielen dank thadod

        
Bezug
Oberflächenintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 21:29 Di 31.01.2012
Autor: notinX

Hallo,

> Guten abend alle zusammen.
>  
> Aufgabe:
>  
> Berechne das Oberflächenintegral der skalaren Funktion
> [mm]f:\IR^3 \to \IR[/mm] über die Oberfläche O [mm]\subset \IR^3[/mm]
>  
> Es ist [mm]f:(x,y,z)\to x^2+y^2[/mm]
>  O sei die Halbsphäre vom
> Radius r, deren Grundlinie in der xy - Ebene liegt.
>  
> Mir ist nun leider unklar, wie ich ein Oberflächenintegral
> einer skalaren Funktion über eine Oberfläche berechnen
> kann.

das tut man mit einem skalaren Oberflächenintegral (-> Nachschlagen).

>  
> Was mir klar ist:
>  
> die Oberfläche ist ja eine Halbsphäre. Wir verwenden also
> scheinbar Kugelkoordinaten.
>  
> Und die parametrisierung von Kugelkoordinaten ist ja:
>  
> [mm]\Phi(\theta, \phi)=\pmat{ r sin\theta cos\phi \\ r\sin\theta sin\phi \\ r cos\theta }[/mm]

Wenn überhaupt, dann ist das die Parametrisierung eines beliebigen Teils einer Kugeloberfläche. Dazu fehlt aber noch die Angabe eines Definitionsbereiches.

>  
> allgemein weiß ich zwar, dass [mm]x^2+y^2[/mm] einen Kreis

Nein, das beschreibt so gar nichts, außer einer Summe aus zwei Quadraten.

> beschreibt, aber es ist ja nur [mm]f(x,y,z)=x^2+y^2[/mm]
>  
> wie also muss ich hier ran gehen ?

Wie dieses f aussieht spielt für das Oberflächenintegral überhaupt keine Rolle. Du musst Dich nur um die Parametrisierung kümmern und ausrechen.

>  
> mfg und vielen vielen dank thadod

Die gleiche Frage wird auch hier behandelt:
https://vorhilfe.de/read?t=864090

Gruß,

notinX

Bezug
                
Bezug
Oberflächenintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:27 Mi 01.02.2012
Autor: thadod

Hallo notinx und dankeschön für deine Hilfe...

Der Link den du mir geschickt hast, ist leider nicht so informativ...

Also es geht ja letztlich scheinbar um das skalare Oberflächenflächenintegral einer Halbsphäre.

Ich entscheide mich nun für die Halbsphäre, nennen wir sie besser obere Halbkugel. Diese Obere Halbkugel liegt mit der Grundfläche auf der xy - Ebene (Wie gefordert).

Es gilt nun allgemein für die Menge in Kugelkoordinaten (nennen wir sie A):

A= [mm] \left\{ (r,\theta,\phi) \in \IR^3 | r \ge 0 , 0 \le \theta \le \bruch{\pi}{2} , 0 \le \phi \le 2\pi \right\} [/mm]

Ich parametrisiere nun wie folgt:

[mm] \Phi(\theta, \phi)=\pmat{ r sin\theta cos\phi \\ r\sin\theta sin\phi \\ r cos\theta } [/mm]

Wie [mm] \theta [/mm] und [mm] \phi [/mm] definiert sind, gibt ja eigentlich meine Menge wieder.

Was bei Oberflächenintegralen allgemein passiert ist mir ja klar.

Ich war mir leider nicht so sicher, wie ich [mm] f(x,y,z)=x^2+y^2 [/mm] unterbringen soll.

mfg thadod

Bezug
                        
Bezug
Oberflächenintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 10:47 Mi 01.02.2012
Autor: notinX


> Hallo notinx und dankeschön für deine Hilfe...
>  
> Der Link den du mir geschickt hast, ist leider nicht so
> informativ...
>  
> Also es geht ja letztlich scheinbar um das skalare
> Oberflächenflächenintegral einer Halbsphäre.
>  
> Ich entscheide mich nun für die Halbsphäre, nennen wir
> sie besser obere Halbkugel. Diese Obere Halbkugel liegt mit
> der Grundfläche auf der xy - Ebene (Wie gefordert).
>  
> Es gilt nun allgemein für die Menge in Kugelkoordinaten
> (nennen wir sie A):
>  
> A= [mm]\left\{ (r,\theta,\phi) \in \IR^3 | r \ge 0 , 0 \le \theta \le \bruch{\pi}{2} , 0 \le \phi \le 2\pi \right\}[/mm]

Diese Menge wäre der komplette positive Halbraum (oberhalb der x-y-Ebene).
Richtig ist so:
[mm] $A=\left\{ (r,\theta,\varphi) \in \IR^3 | r=\text{konst.} , 0 \le \theta \le \bruch{\pi}{2} , 0 \le \varphi \le 2\pi \right\}$ [/mm]

>  
> Ich parametrisiere nun wie folgt:
>  
> [mm]\Phi(\theta, \phi)=\pmat{ r sin\theta cos\phi \\ r\sin\theta sin\phi \\ r cos\theta }[/mm]
>  
> Wie [mm]\theta[/mm] und [mm]\phi[/mm] definiert sind, gibt ja eigentlich
> meine Menge wieder.
>  
> Was bei Oberflächenintegralen allgemein passiert ist mir
> ja klar.
>  
> Ich war mir leider nicht so sicher, wie ich
> [mm]f(x,y,z)=x^2+y^2[/mm] unterbringen soll.

Hast Du Dir das Oberflächenintegral mal angeschaut?
[mm] $\iint_{A} f(\vec{x}) \, \mathrm [/mm] d A = [mm] \iint f\left(\vec{\phi}(\varphi,\theta)\right) \, ||\vec{\phi}_{\varphi} \times \vec{\phi}_{\theta}|| \,\, \mathrm d(\varphi,\theta)$ [/mm]
[mm] $\vec{\phi}(\varphi,\theta)$ [/mm] ist die Parametrisierung. Die setzt Du einfach in f ein und rechnest drauf los.

>  
> mfg thadod


Gruß,

notinX

Bezug
                                
Bezug
Oberflächenintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:14 Mi 01.02.2012
Autor: thadod

Hallo notinx und danke...

Das tut mir leid ich hatte mir anscheinend etwas falsches im Unterricht abgeschrieben.

Wir hatten scheinbar f(x,y,z)=1 angenommen, so dass ich mir folgendes für mein Kurvenintegral abgeschrieben habe:

[mm] \integral \integral_A [/mm] dA

So wie du das jetzt schreibst ist es einleuchtender und ich weiß auch endlich, wie ich mein [mm] f(x,y,z)=x^2+y^2 [/mm] verwerten kann.

Du sagst, es ist:

[mm] \integral \integral_A f(\vec{x}) dA=\iint f\left({\Phi}(\theta,\phi)\right) \, ||\bruch{\partial \Phi}{\partial \theta} \times \bruch{\partial \Phi}{\partial \phi}|| \,\, \mathrm d\theta d\phi [/mm]

Jetzt habe ich auch endlich einen Plan für [mm] f({\Phi}(\theta,\phi)) [/mm]

Wenn ich die parametrisierung in Kugelkoordinaten durchziehe, dann ergibt sich:

[mm] \Phi(\theta ,\phi)=R \pmat{ sin\theta cos\phi \\ sin\theta sin\phi \\ cos\theta } [/mm] für [mm] (\theta,\phi) \in [0,\bruch{\pi}{2}] \times [0,2\pi] [/mm]

und somit ist [mm] f({\Phi}(\theta,\phi))=R^2sin^2\theta cos^2\phi [/mm] + [mm] R^2sin^2\theta sin^2\phi [/mm] = [mm] R^2sin^2 \theta [/mm]

denn es ist ja [mm] cos^2\phi [/mm] + [mm] sin^2\phi=1 [/mm]

außerdem ergeben sich:

[mm] \bruch{\partial \Phi}{\partial \theta}=R \vektor{cos\theta cos\phi \\ cos\theta sin\phi \\ -sin\theta} [/mm]

[mm] \bruch{\partial \Phi}{\partial \phi}=R \vektor{-sin\theta sin\phi \\ sin\theta cos\phi \\ 0} [/mm]

Das Oberflächenintegral wird gleich noch vervollständigt...

Eine Frage hätte ich noch.

Wieso wird häufig so unterschiedlich parametrisiert?

mal wird [mm] \Phi(\theta ,\phi)=R \pmat{ sin\theta cos\phi \\ sin\theta sin\phi \\ cos\theta } [/mm] für [mm] (\theta,\phi) \in [0,\bruch{\pi}{2}] \times [0,2\pi] [/mm]

und mal wird [mm] \Phi(\theta ,\phi)=R \pmat{cos\phi cos\theta \\ sin\phi cos\theta \\ sin\theta } [/mm] für [mm] (\theta,\phi) \in [-\bruch{\pi}{2},\bruch{\pi}{2}] \times [0,2\pi] [/mm]

gewählt

mfg thadod

Bezug
                                        
Bezug
Oberflächenintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 08:14 Do 02.02.2012
Autor: notinX


> Hallo notinx und danke...
>  
> Das tut mir leid ich hatte mir anscheinend etwas falsches
> im Unterricht abgeschrieben.
>  
> Wir hatten scheinbar f(x,y,z)=1 angenommen, so dass ich mir
> folgendes für mein Kurvenintegral abgeschrieben habe:
>  
> [mm]\integral \integral_A[/mm] dA

Das ist nicht falsch, sondern ein Spezialfall. Außerdem ist das ein Oberflächen- und kein Kurvenintegral. Wenn man das Oberflächenintegral über die Funktion f=1 berechnet bekommt man den Flächeninhalt der parametrisierten Fläche.

>  
> So wie du das jetzt schreibst ist es einleuchtender und ich
> weiß auch endlich, wie ich mein [mm]f(x,y,z)=x^2+y^2[/mm] verwerten
> kann.
>  
> Du sagst, es ist:
>  
> [mm]\integral \integral_A f(\vec{x}) dA=\iint f\left({\Phi}(\theta,\phi)\right) \, ||\bruch{\partial \Phi}{\partial \theta} \times \bruch{\partial \Phi}{\partial \phi}|| \,\, \mathrm d\theta d\phi[/mm]
>  
> Jetzt habe ich auch endlich einen Plan für
> [mm]f({\Phi}(\theta,\phi))[/mm]
>  
> Wenn ich die parametrisierung in Kugelkoordinaten
> durchziehe, dann ergibt sich:
>  
> [mm]\Phi(\theta ,\phi)=R \pmat{ sin\theta cos\phi \\ sin\theta sin\phi \\ cos\theta }[/mm]
> für [mm](\theta,\phi) \in [0,\bruch{\pi}{2}] \times [0,2\pi][/mm]
>  
> und somit ist [mm]f({\Phi}(\theta,\phi))=R^2sin^2\theta cos^2\phi[/mm]
> + [mm]R^2sin^2\theta sin^2\phi[/mm] = [mm]R^2sin^2 \theta[/mm]
>  
> denn es ist ja [mm]cos^2\phi[/mm] + [mm]sin^2\phi=1[/mm]

[ok]

>  
> außerdem ergeben sich:
>  
> [mm]\bruch{\partial \Phi}{\partial \theta}=R \vektor{cos\theta cos\phi \\ cos\theta sin\phi \\ -sin\theta}[/mm]
>  
> [mm]\bruch{\partial \Phi}{\partial \phi}=R \vektor{-sin\theta sin\phi \\ sin\theta cos\phi \\ 0}[/mm]

[ok]

>  
> Das Oberflächenintegral wird gleich noch
> vervollständigt...
>  
> Eine Frage hätte ich noch.
>  
> Wieso wird häufig so unterschiedlich parametrisiert?
>  
> mal wird [mm]\Phi(\theta ,\phi)=R \pmat{ sin\theta cos\phi \\ sin\theta sin\phi \\ cos\theta }[/mm]
> für [mm](\theta,\phi) \in [0,\bruch{\pi}{2}] \times [0,2\pi][/mm]

[ok]

>  
> und mal wird [mm]\Phi(\theta ,\phi)=R \pmat{cos\phi cos\theta \\ sin\phi cos\theta \\ sin\theta }[/mm]
> für [mm](\theta,\phi) \in [-\bruch{\pi}{2},\bruch{\pi}{2}] \times [0,2\pi][/mm]

Das wäre aber die ganze Kugelfläche, nicht nur die obere Hälfte.

>  
> gewählt

Welchen Konvention man nutzt ist reine Geschmackssache. Beides ist gleichermaßen richtig. Ich würde Dir die übliche Konvention empfehlen, also die erste Variante. Das ist internationaler Konsens in der Physik.

>  
> mfg thadod


Gruß,

notinX

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]