matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationOberflächenintegrale
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Oberflächenintegrale
Oberflächenintegrale < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Oberflächenintegrale: Oberfläche des Paraboloids
Status: (Frage) beantwortet Status 
Datum: 19:46 So 14.01.2007
Autor: Zebra2202

Aufgabe
Bestimmen Sie die Oberfläche des Paraboloids

z = 2 - [mm] x^2 [/mm] - [mm] y^2 [/mm]      

[mm] x^2 [/mm] + [mm] y^2 \le [/mm] 2

Wir behandeln derzeit Oberflächenintegrale. Mit dieser Aufgabenstellung kann ich allerdings nichts anfangen. Meiner Meinung nach fehlen sogar Angaben. Kann mir jemand helfen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Oberflächenintegrale: Antwort
Status: (Antwort) fertig Status 
Datum: 02:21 Mo 15.01.2007
Autor: MatthiasKr

Hallo,
> Bestimmen Sie die Oberfläche des Paraboloids
>  
> z = 2 - [mm]x^2[/mm] - [mm]y^2[/mm]      
>
> [mm]x^2[/mm] + [mm]y^2 \le[/mm] 2
>  Wir behandeln derzeit Oberflächenintegrale. Mit dieser
> Aufgabenstellung kann ich allerdings nichts anfangen.
> Meiner Meinung nach fehlen sogar Angaben. Kann mir jemand
> helfen?

nein, da fehlen keine angaben. du hast eine flaeche gegeben als graph

[mm] $z=f(x,y)=2-x^2-y^2$, [/mm]

also auch eine parametrisierung [mm] $X:\IR^2\supset U\to \IR^3$ [/mm] mit

[mm] $X(u,v)=\begin{pmatrix}{u\\v\\f(u,v)}\end{pmatrix}$. [/mm]

je nachdem, wie ihr die flaechenintegrale (bzw. die flaechenelemente) in der VL definiert habt, kannst du nun problemlos die oberflaeche des paraboloids berechnen.

gruss
matthias

Bezug
                
Bezug
Oberflächenintegrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:54 Mo 15.01.2007
Autor: Zebra2202

Hallo,

erstmal vielen Dank für Deine Antwort.
Nun stehe ich allerdings noch vor dem Problem, dass ich zum Berechnen ein Vektorfeld [mm] \vec{a} [/mm] benötige und dieses nach meiner Meinung nicht angegeben ist.
Bisher war immer ein Vektorfeld angegeben. Oder sehe ich das hier nicht?

Schöne Grüße,
Kerstin

Bezug
                        
Bezug
Oberflächenintegrale: Antwort
Status: (Antwort) fertig Status 
Datum: 17:56 Mo 15.01.2007
Autor: Leopold_Gast

Du sollst ja auch gar kein Oberflächenintegral berechnen, sondern die Oberfläche eines Paraboloids. Sozusagen: Wie viele cm² hat die Fläche? Und das ist doch etwas völlig anderes.

Wegen [mm]x^2 + y^2 \leq 2[/mm] folgt [mm]z \in [0,2][/mm]. Denke dir nun ein solches [mm]z[/mm] fest gewählt. Löst man die Gleichung nach [mm]x^2 + y^2[/mm] auf, erhält man

[mm]x^2 + y^2 = 2-z[/mm]

[Dateianhang nicht öffentlich]

Das beschreibt auf der Höhe [mm]z[/mm] einen Kreis vom Radius [mm]r(z) = \sqrt{2-z}[/mm]. Das Paraboloid entsteht also, indem man in einem [mm]xz[/mm]-Koordinatensystem die Parabel mit der Gleichung [mm]x = \sqrt{2-z}[/mm], d.h [mm]z = 2 - x^2[/mm], für [mm]z \in [0,2][/mm] um die [mm]z[/mm]-Achse rotieren läßt. Die Parabel hat ihren Scheitel bei [mm](x,z) = (0,2)[/mm] und ist von der Form einer Normalparabel. Statt ihrer kann man auch in einem [mm]xy[/mm]-Koordinatensystem die Parabel mit der Gleichung

[mm]y = \sqrt{x}[/mm]

in den Grenzen von 0 bis 2 um die [mm]x[/mm]-Achse rotieren lassen. Das ist bequemer zu rechnen. Für solche Rotationskörper berechnet man die Mantelfläche [mm]M[/mm] bezüglich des Intervalls [mm][a,b][/mm] gemäß

[mm]M = 2 \pi \int_a^b~y \, \sqrt{1 + y'^2}~\mathrm{d}x[/mm]

Im konkreten Fall habe ich [mm]M = \frac{13}{3} \pi[/mm] erhalten. Das Integral läßt sich bequem lösen, wenn man alles unter eine Wurzel zieht.

Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]