matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenOberflächensteigung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - Oberflächensteigung
Oberflächensteigung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Oberflächensteigung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:54 Do 19.05.2011
Autor: Ablx

Aufgabe
Bestimmen Sie für f(x,y) = [mm] \bruch{x}{1+y^2} [/mm] an der Stelle P0(1;1) die Richtung in der die Oberfläche am stärksten steigt bzw. fällt.

Moin erstmal ;)
Mein Problem ist, das ich nicht genau weiß, was ich da machen muss. Klingt ja eigentlich nach Extremwerte suchen. Aber woher kenn ich dann die Richtung?

Ich hab erstmal die partiellen Ableitungen gebildet.
fx = [mm] \bruch{1}{1+y^2} [/mm]
fxx = 0

fy = [mm] \bruch{2xy}{(1+y^2)^2} [/mm]
fyy = [mm] 4y+4y^3 [/mm]

fxy = [mm] \bruch{2y}{(1+y^2)^2} [/mm]

Und dann? Muss ich (1;1) einsetzen, oder wie? :)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Oberflächensteigung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:20 Do 19.05.2011
Autor: fred97


> Bestimmen Sie für f(x,y) = [mm]\bruch{x}{1+y^2}[/mm] an der Stelle
> P0(1;1) die Richtung in der die Oberfläche am stärksten
> steigt bzw. fällt.
>  Moin erstmal ;)
> Mein Problem ist, das ich nicht genau weiß, was ich da
> machen muss. Klingt ja eigentlich nach Extremwerte suchen.
> Aber woher kenn ich dann die Richtung?
>  
> Ich hab erstmal die partiellen Ableitungen gebildet.
>  fx = [mm]\bruch{1}{1+y^2}[/mm]
>  fxx = 0
>  
> fy = [mm]\bruch{2xy}{(1+y^2)^2}[/mm]
>  fyy = [mm]4y+4y^3[/mm]
>  
> fxy = [mm]\bruch{2y}{(1+y^2)^2}[/mm]
>  
> Und dann? Muss ich (1;1) einsetzen, oder wie? :)
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Schau Dir das

               http://markusengelhardt.com/skripte/grad-div-rot.pdf

mal an, ab Seite 21

FRED


Bezug
                
Bezug
Oberflächensteigung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:59 Do 19.05.2011
Autor: Ablx

Wow, das ging fix, vielen Dank.
Bin mir aber ziemlich sicher, das wir das so in Analysis nicht gemacht haben. Gibt es da noch einen anderen Ansatz?

Ansonsten hat mir das schon geholfen :)

Bezug
                        
Bezug
Oberflächensteigung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:28 Do 19.05.2011
Autor: chrisno

Klar, du kannst auch zu Fuß gehen. Die partiellen Ableitungen geben Dir den Anstieg in Richtung x  oder y. Du kannst auch in andere Richtungen ableiten. Habt ihr das gemacht?

Nachtrag: Aus den beiden partiellen Ableitungen kannst Du Dir Einheitsvektoren in (x/y/z) erstellen. Die beiden Vektoren bestimmen die Lage Tangentialebene an dem Punkt. Nun musst Du noch schauen, wo es am steilsten diese Ebene hoch geht.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]