matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikObservable QM
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Physik" - Observable QM
Observable QM < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Observable QM: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:47 Di 26.05.2009
Autor: Phecda

hi
in meinem QM buch steht:

Wird ein System durch eine stationäre Wellenfkt [mm] \Psi(r) [/mm] charakterisiert, so lautet die Bedingung, dass für eine Observable, dargestellt durch den Operator A, bei jeder Messung der Wert a auftritt:

[mm] \integral_{}^{}{\Psi(r)^\*[(A-a)^2 \Psi(r) d^3x} [/mm]

Der Messwert a ist in diesem Fall identisch mit dem Mittelwert

a = <A> = [mm] \integral_{}^{}{\Psi(r)^\*(A \Psi(r)) d^3x} [/mm]

okay meine frage ist, warum die erste Gleichung immer gilt, wenn man bei einer Messung stehts die Observable a misst?
Und den zusammenhang zu <A> ist mir auch etwas undeutlich....
mein buch erklärt es auch iwie nicht...
wäre toll wenn mir jmd hier helfen kann :-) danke

        
Bezug
Observable QM: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:06 Di 26.05.2009
Autor: leduart

Hallo
Das erste ist ein Ausdruck, keine Gleichung.
Gruss leduart

Bezug
        
Bezug
Observable QM: Antwort
Status: (Antwort) fertig Status 
Datum: 07:44 Mi 27.05.2009
Autor: Kroni

Hi,

deine erste Gleichung beschreibt die Standardabweichung [mm] $\Delta^2 [/mm] a$.

Kann es sein, dass dahinter noch steht, dass diese gleich Null ist?

LG

Kroni


Bezug
                
Bezug
Observable QM: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:02 Mi 27.05.2009
Autor: Phecda

hallo
ja sorry
=0 muss noch da stehen. okay also wird die standardabweichung so definiert?
und wieso? ich dachte das sie ist [mm] -^2? [/mm]
bin mir noch nicht so sicher wie die ganzen formeln zusammenhängen ..

Bezug
                        
Bezug
Observable QM: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:34 Mi 27.05.2009
Autor: Kroni

Hi,

die Standardabweichung ist doch sowas wie [mm] $\int\,dx\, \psi^* (A-a)^2 \psi [/mm] $, wobei a der Erwartungswert ist: [mm] $a=\int\,\dx\,\psi^{\*} [/mm] A [mm] \psi$, [/mm] und [mm] $<\psi|\psi>=1$ [/mm]

Wenn man sich das umformt, kommt man zu folgendem Ausdruck:

[mm] $\int\,dx\, \psi^{\*} (A-a)^2 \psi [/mm] = [mm] \int\,dx\,\psi^{\*} [A^2-2\cdot a\cdot [/mm] A + [mm] a^2] \psi [/mm] = [mm] \int\,\dx\,\psi^{\*} A^2 \psi [/mm] -2a [mm] \underbrace{\int\,\dx\,\psi^{\*} A \psi}_{a} [/mm] + [mm] a^2 \underbrace{\int\,dx\,\psi^{\*}\psi}_{1}=$\int\,\dx\,\psi^{\*} A^2 \psi [/mm] - [mm] a^2$ [/mm]

Die eigentliche Def. der Std-Abweichung ist die obere, die ist aber (nach der Rechnung) voellig aequivalent zu deiner.


Wenn du jetzt eine Messung machst, und die Standardabweichung 0 ist, dann misst du immer und immer wieder den "richtigen" Wert a.

LG

Kroni

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]