matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesOffene M., Komplement usw
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - Offene M., Komplement usw
Offene M., Komplement usw < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Offene M., Komplement usw: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 18:40 So 10.11.2019
Autor: bondi

Aufgabe
Sei [mm] D = \{(x,y) \in \IR^2 \medspace | \medspace x+y \geqslant 0 \medspace \} [/mm]

Hallo,
für das o.g. Skriptbeispiel gibt es folgende Angaben.

1) D ist nicht offen [mm] [(0,0) \in D [/mm] und [mm] U_\epsilon (0,0) \notin D \medspace \forall \epsilon > 0 \medspace ][/mm]

Frage: D ist nicht offen. Ich schreib das dem Prof in mathematisch korrekter Form. Für den schnellen Blick ist D doch aber nicht offen, da [mm] \ge [/mm] D abschließt?

2) D ist abgeschlossen, denn [mm] \IR^2 \medspace \textbackslash \medspace D [/mm] ist offen.

Wenn D nicht offen, ist das Komplement [mm] \IR \medspace \textbackslash \medspace D [/mm] offen? Ist D immer abgeschlossen, wenn es nicht offen ist?

3) D ist nicht beschränkt, denn [mm] (x,0) \in D \medspace \forall x \ge 0 [/mm]

D ist nicht beschränkt, da x unendlich große Werte annehmen kann? Ist das für euch nachvollziehbar, weshalb statt y null angegeben wurde?

4) D ist nicht kompakt, weil nicht beschränkt.

Kompakt = beschränkt und abgeschlossen, ist klar.

Viele Grüße,
bondi

        
Bezug
Offene M., Komplement usw: Antwort
Status: (Antwort) fertig Status 
Datum: 20:02 So 10.11.2019
Autor: Gonozal_IX

Hiho,

> Sei [mm]D = \{(x,y) \in \IR^2 \medspace | \medspace x+y \geqslant 0 \medspace \}[/mm]
>  
> Hallo,
>  für das o.g. Skriptbeispiel gibt es folgende Angaben.
>  
> 1) D ist nicht offen [mm][(0,0) \in D[/mm] und [mm]U_\epsilon (0,0) \notin D \medspace \forall \epsilon > 0 \medspace ][/mm]
>  
> Frage: D ist nicht offen. Ich schreib das dem Prof in mathematisch korrekter Form.

Wieso möchtest du ihm das schreiben, wenn es doch schon im Skript steht?

> Für den schnellen Blick ist D doch aber nicht offen, da [mm]\ge[/mm] D abschließt?

Der schnelle Blick kann manchmal aber auch trüben.
Wäre bspw: [mm]D = \{(x,y) \in [0,\infty)^2 \medspace | \medspace x+y \geqslant 0 \medspace \}[/mm] so wäre D sehr wohl offen.

> 2) D ist abgeschlossen, denn [mm]\IR^2 \medspace \textbackslash \medspace D[/mm]
> ist offen.
>  
> Wenn D nicht offen, ist das Komplement [mm]\IR \medspace \textbackslash \medspace D[/mm] offen? Ist D immer abgeschlossen, wenn es nicht offen ist?

Nein, D könnte weder offen noch abgeschlossen sein.
Hier müsste man erst zeigen, dass [mm] $\IR^2\setminus{D}$ [/mm] wirklich offen ist.

> 3) D ist nicht beschränkt, denn [mm](x,0) \in D \medspace \forall x \ge 0[/mm]
> D ist nicht beschränkt, da x unendlich große Werte
> annehmen kann? Ist das für euch nachvollziehbar, weshalb
> statt y null angegeben wurde?

Wenn D beschränkt wäre, müsste [mm] $\parallel(x,0)\parallel$ [/mm] beschränkt sein.
Nun berechne mal [mm] $\parallel(x,0)\parallel$. [/mm] Da dies eine sehr einfache Form hat, hat man sich wohl dafür entschieden.

> 4) D ist nicht kompakt, weil nicht beschränkt.
>  
> Kompakt = beschränkt und abgeschlossen, ist klar.

Ok.

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]