matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesOperatornorm
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Sonstiges" - Operatornorm
Operatornorm < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Operatornorm: Korrektur
Status: (Frage) beantwortet Status 
Datum: 21:32 Mo 19.11.2007
Autor: Igor1

Aufgabe
Berechne die Operatornorm der folgenden linearen Abbildungen

(a) [mm] (\IR^{2} [/mm] , [mm] \parallel \parallel _{\infty}) \to (\IR^{2} [/mm] , [mm] \parallel \parallel _{\infty } [/mm] ) , x [mm] \to [/mm] Ax für [mm] A=\pmat{ 1 & 0 \\ 0 & 3} [/mm]

Hallo,
ich habe so versucht zu lösen:
wenn man die Definition von Operatornorm nimmt, dann habe ich für x den Vektor [mm] \vektor{1 \\ 1} [/mm] genommen und ihn mit A multipliziert. Es kam [mm] \vektor{1 \\ 3} [/mm] raus.

Ich bin mir aber nicht sicher , ob meine Vorgehensweise korrekt ist.

Ich bitte um eine Korrektur

Gruss

Igor

        
Bezug
Operatornorm: Antwort
Status: (Antwort) fertig Status 
Datum: 21:58 Mo 19.11.2007
Autor: Hund

Hallo,

die Operatornorm ist hier doch:

sup norm(Ax) über alle x mit norm(x) kleiner oder gleich 1.

Du kannst nicht einfach ein beliebigen Vektor nehmen, sondern du musst überlegen wie das obige Supremum aussieht.

Dazu musst du überlegen:

Was bedeutet norm(x) kleiner gleich 1?

Du betrachtest die lunendlich Norm. Das bedeutet der Betrag jeder Komponente des Vektors ist kleiner oder gleich 1 ist.

Jetzt schätzt du norm(Ax) ab. Da du wieder die lunendlich-Norm betrachtest musst du die Betraäge der Komponenten von Ax abschätzen.

Wie sehen die aus:

Betrag der ersten Komponente von Ax:

[mm] l1x_{1}+0x_{2}l=lx_{1}l\le1, [/mm] da norm(x) [mm] \le1. [/mm]

Betrag der zweiten Komponente:

[mm] l0x_{1}+3x_{2}l=3lx_{2}l\le3, [/mm] da norm(x) [mm] \le1. [/mm]

Sei C das gesuchte sup. Dann gilt also auf jeden Fall:
C [mm] \le [/mm] max{1;3}=3.

Damit hast du nur eine Abschätzung des gesuchten sup. Um es zu bestimmen betrachten wir den Vekto x=(1,1). Für den gilt norm(x)=1 und Ax=(1,3) und damit norm(Ax)=3. Also folgt [mm] C\ge3. [/mm]

Zusammen also:C=3.

Ich hoffe, es hat dir geholfen.

Gruß
Hund





Bezug
        
Bezug
Operatornorm: Korrektur
Status: (Frage) überfällig Status 
Datum: 18:49 Di 20.11.2007
Autor: Igor1

Aufgabe
Berechne die Operatornorm der folgenden linearen Abbildung [mm] (b)(\IR^{2}, \parallel \parallel_{2}) \to (\IR^{2}, \parallel \parallel_{2}) [/mm] , x [mm] \to [/mm] Bx für B = [mm] \pmat{ cosa & sina\\ -sina & cosa },a \in \IR [/mm]

Hallo ,

ich habe jetzt auch mit (b) versucht:

Bx habe ich als Norm ausgewertet: [mm] \wurzel{(cosa x_{1}+sina x_{2})^{2}+(-sina x_{1}+cosa x_{2})^{2}}= \wurzel{cos^{2}a (x_{1}^{2}+x_{2}^{2})+sin^{2}a (x_{1}^{2}+ x_{2}^{2})}, [/mm] da

[mm] \parallel [/mm] x [mm] \parallel_{2} \le [/mm] 1 sup [mm] \parallel [/mm] Bx [mm] \parallel_{2}=1 [/mm]

Habe ich richtig gemacht?


P.S: bei (c) ist eine Abbildung gegeben, wo anstatt des Normenzeichens [mm] \parallel \parallel_{...} [/mm] einfach | | Betragstriche stehen ( beim Urbild und dem Bild) . Handelt es sich um eine Norm oder etwas anderes, denn ich kenne nur die Parallelstriche-Schreibweise für eine Norm.

Gruss

Igor

Bezug
                
Bezug
Operatornorm: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:17 Do 22.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]