matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisOperatornorm - Abschätzung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionalanalysis" - Operatornorm - Abschätzung
Operatornorm - Abschätzung < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Operatornorm - Abschätzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:08 Mi 11.01.2012
Autor: waruna

Aufgabe
Im Beweis des Satzes von gleimäßigen Beschränkheit in meinem Skript  hat man folgende Aussage gemacht:
Seien T [mm] \in [/mm] L(X,Y), x [mm] \in [/mm] X, r>0. Dann:
[mm] r||T||\le [/mm] sup||T(y)||, mit [mm] y\in [/mm] B(x,r)
Mit einem Beweis:
Für [mm] a\in [/mm] X, ||a||<r:
[mm] ||T(a)||\le 1/2(||T(x+a)||+||T(x-a)||)\le [/mm] sup||T(y)||, mit [mm] y\in [/mm] B(x,r)

Im Beweis sind für mich alle Schlüßfolgerungen klar, ich verstehe nur nicht warum sie die erste Ungleichung beweisen sollen:
[mm] r||T||\le [/mm] sup||T(y)||, mit [mm] y\in [/mm] B(x,r)
?
Es läßt sich schreiben:
[mm] ||T(a)||\le||a||||T||\le [/mm] r||T||
also Aussage, dass ||T(a)|| ist kleiner als etwas zeigt überhaupt nicht, dass r||T|| auch kleiner ist.
Ich habe folgende Frage nirgendwo anders gestellt.
Vielen Dank für eine Hilfe:) !


        
Bezug
Operatornorm - Abschätzung: Antwort
Status: (Antwort) fertig Status 
Datum: 06:58 Do 12.01.2012
Autor: fred97


> Im Beweis des Satzes von gleimäßigen Beschränkheit in
> meinem Skript  hat man folgende Aussage gemacht:
>  Seien T [mm]\in[/mm] L(X,Y), x [mm]\in[/mm] X, r>0. Dann:
>  [mm]r||T||\le[/mm] sup||T(y)||, mit [mm]y\in[/mm] B(x,r)
>  Mit einem Beweis:
>  Für [mm]a\in[/mm] X, ||a||<r:
>  [mm]||T(a)||\le 1/2(||T(x+a)||+||T(x-a)||)\le[/mm] sup||T(y)||, mit
> [mm]y\in[/mm] B(x,r)
>  Im Beweis sind für mich alle Schlüßfolgerungen klar,
> ich verstehe nur nicht warum sie die erste Ungleichung
> beweisen sollen:
>  [mm]r||T||\le[/mm] sup||T(y)||, mit [mm]y\in[/mm] B(x,r)
>  ?
>  Es läßt sich schreiben:
>  [mm]||T(a)||\le||a||||T||\le[/mm] r||T||
>  also Aussage, dass ||T(a)|| ist kleiner als etwas zeigt
> überhaupt nicht, dass r||T|| auch kleiner ist.
>  Ich habe folgende Frage nirgendwo anders gestellt.
>  Vielen Dank für eine Hilfe:) !
>  


Sei $s:= sup [mm] \{||Ty||: y \in B(x,r)\}$ [/mm]

Die letzte Ungl. lautet also:

         $||Ta|| [mm] \le [/mm] s$ für alle a [mm] \in [/mm] X mit ||a||<r

Es folgt:

    (*)     $||Ta|| [mm] \le [/mm] s$ für alle a [mm] \in [/mm] X mit ||a|| [mm] \le [/mm] r

Sei nun b [mm] \in [/mm] X und ||b||=1. Setze a:=rb. Aus (*) folgt:

             $r||Tb||=||T(rb)||=||Ta|| [mm] \le [/mm] s$

Gehe nun links zum Supremum über alle normierten b über und Du bekommst:

              $r||T|| [mm] \le [/mm] s$

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]