Optimalitätskrit. 1. Ordnung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo,
ich habe ein Verständnisproblem, was das Optimalitätskriterium erster Ordnung anbetrifft, und würde mich freuen, wenn ich durch eure Antworten das Ganze verstehen würde.
Es heißt:
(1) Notwendiges Kriterium: Ist f: [mm] \IR^{n} [/mm] -> [mm] \IR [/mm] eine differenzierbare Funktion mit 0 aus [mm] \IR^{n} [/mm] als lokales Minimum der Funktion f, so folgt für alle partiellen Ableitungen [mm] \bruch{\partial f }{\partial x_{i}} [/mm] ausgewertet an der Stelle 0 gleich Null.
Das kann ich noch soweit verstehen, als dass ich es mir im 1-dim. Fall noch veranschaulichen kann. Aus der Schule weiß man schließlich, dass die Steigung an einer Stelle x (hier: x=0) f'(x) gleich 0 ist, falls x Minimalstelle von f.
(1') Jetzt folgt aber eine Version für f eingeschränkt auf den nichtnegativen Orthanten, die völlig analog zu (1) ist, bloß dass die partiellen Ableitungen alle GRÖSSER gleich 0 sind.
FRAGE: Warum dieses "größer"? Wenn ich es mir dadurch erkläre, dass die Steigungen in alle Richtungen [mm] x_{i} [/mm] positiv sein müssen an der Minimalstelle, dann verstehe ich nicht, wieso sie in (1) nicht ebenfalls alle größer gleich 0 sind.
Also irgendwie fällt es mir schwer, die Brücke zwischen (1) und (1') zu schlagen und das Ganze zu verstehen.
Ich wäre also sehr dankbar für themabezogene Antworten.
Liebe Grüße,
westpark.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:20 Do 05.06.2008 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|