matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenÖkonomische FunktionenOptimum Produktionseinheiten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Ökonomische Funktionen" - Optimum Produktionseinheiten
Optimum Produktionseinheiten < Ökonomische Funktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ökonomische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Optimum Produktionseinheiten: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 23:07 Di 26.12.2006
Autor: roman_l

Aufgabe
Kleinstadt kostet 100.000, bringt 1500€ steuern pro zeiteinheit
Stadt kostet 250.000, bringt 2500€ steuern pro zeiteinheit
Großstadt kostet 500.000, bringt 4700€ steuern pro zeiteinheit

Hat man eine stadt gebaut, so erhöht sich der baupreis der gleichartigen nächsten stadt um 10% des Grundpreises.

Bau einer Kleinstadt und Stadt dauert 60 Minuten. Bau einer Großstadt dauert 120 Minuten.

Stadt ist Stadt und kann nicht zu einer anderen Stadt entwickelt werden. D.h. Man baut eine Großstadt oder eine Kleinstadt, aber die Kleinstadt wird in keinem Fall zur großstadt.

Schnellst- und größtmöglicher Gewinn?

Jaaa.. habe gester versucht, dahinter zu kommen, aber irgendwo bin ich immer hängen geblieben.

Ich kann mir vorstellen, dass die Großstädte langfristig gesehen den meisten gewinn bringen und wenn die anzahl der städte gegen unendlich geht, sollte man großstädte haben, da diese  im verhältnis zu den kosten am meisten gewinn bringen. Oder liege ich da falsch?

Wie berechne ich jedoch letztendlich den optimalen und schnellstmöglichen gewinn?


Wenn man 10 Kleinstädte gebaut hat, dann kostet die nächste kleinstadt schon nicht mehr 100.000 sondern 210.000. So gilt für die Städte kosten(bestand)=grundpreis + bestand * 10/100 * grundpreis.

Aber wie komme ich nun konkret dahinter, in welcher reihenfolge man die städte bauen sollte? Ich versuche die ganze zeit, mir das irgendwie grafisch vorzustellen aber ich weiss leider nicht, wo ich anfangen soll.

Hat jemand nen Tipp?

Schönen Gruß



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Optimum Produktionseinheiten: Antwort
Status: (Antwort) fertig Status 
Datum: 12:39 Mi 27.12.2006
Autor: Cyberleon

Erstmal vorweg eine Frage: ist definitiv sicher, dass mit "Grundpreis" der anfangspreis gemeint ist (z.B. für Kleinstadt IMMER 100000 ) ? Oder ist damit der VORHERGEHENDE preis gemeint?

Dann wären nämlich die Kosten für die 2te Kleinstadt:

Preis der vorherigen Kleinstadt (100000) * 110 % = 100000 * 110/100 = 110000

und der Preis für die dritte Kleinstadt wäre

Preis der vorherigen Kleinstadt (110000) * 110 % = 110000 * 110/100 = 121000

... der Preis der 10ten Kleinstadt wäre demnach:

100000 * 110/100 * 110/100 * 110 / 100 * ...( insgesamt 9 mal 110/100 )

= 100000 * [mm] (110/100)^9 [/mm]

= 100000 * (110/100)^(x-1)      mit x = Anzahl Kleinstädte, in diesem Fall 10

= 214358,88

also nicht 210000, wie du angegeben hast (hast du gerundet ?)

-

Eine weitere Frage die sich aus der Aufgabenstellung ergibt ist:
Was ist eine "ZEITEINHEIT" ?
Um das Beispiel konkret durchrechnen zu können, sollte hier eine konkrete Angabe gemacht werden. Andernfalls hat man halt eine Unbekannte mehr, die für die Lösung der Aufgabe jedoch eher hinderlich ist. (wäre z.B. die Zeiteinheit 1 minute, un würde man zuerst mit einer Kleinstadt beginnen, so hätte sich diese bereits nach 66,6 Minuten amotisiert.)

-

Eine weitere Frage, die die Aufgabenstellung nicht beantwortet, ist, wie viele Städte parallel gebaut werden können,und ob überhaupt Städte gebaut werden müssen ( wenn nicht, so wäre die Frage nach schnellstmöglichem Gewinn bereits beantwortet - man baut keine Stadt und verbucht das für den Bau gedachte Geld als Gewinn :P).

Ich gehe mal davon aus, dass Städte gebaut werden müssen, und ich gehe davon aus, dass nur ein "Bautrupp" zur verfügung steht, d.h. dass ich nur an einer Stadt bauen kann.

Die Frage nach dem grösten Umsatz lässt sich bereits jetzt schnell lösen. Da mein Bautrupp für die Grossstadt doppelt solange braucht wie für Stadt und Kleinstadt, halbiert sich der Umsatz pro Zeiteinheit - bzw ich nehme zum Vergleich den Umsatz aus Stadt und Kleinstadt mal 2. Im Vergleich:
Kleinstadt: 3000 Stadt: 5000 Grossstadt 4700
Um ein Umsatzmaximum zu erzielen, baut man also am laufenden Band "Städte", unabhängig von den steigenden Kosten (das Abziehen von Kosten wäre bereits eine Art der Gewinnbetrachtung)

Nun können wir uns - anhand der vorhergehenden Überlegung "Wie gross ist eine Zeiteinheit" - vor Augen führen, was das für unseren Gewinn bedeutet. Ich beginne mit der Betrachtung einer winzigen Zeiteinheit - ich setze t = 0,001s (t = Zeiteinheit = 0,001 Sekunde). Das bedeutet ich erhalte, nachdem ich 60 Minuten auf die Fertigstellung der "Stadt" gewartet habe, in den folgenden 60 minuten

1000*60*60*2500=9000000000

Abzüglich der Stadtbaukosten ( -250000 ) ein Gewinn von 8999750000
eine "Kleinstadt" hätte bis dato einen Gewinn von
1000*60*60*1500-100000=5399900000
gebracht, Eine Grosstadt wäre noch gar nicht fertig.
für sehr kleine Zeiteinheiten sind also offenbar "Städte" die Optimallösung.

Nun eine Annäherung von der Anderen Seite. Wir sagen, t = 600000000m (also 600000000 Minuten, wir können 10000000 Klein-/Städte oder 5000000 Grosstädte bauen). Der Vorteil hier ist, dass wir einfach unsere Städte bauen können, und am "Ende der Zeit" (im wahrsten Sinne des Wortes ...) unsere Abrechnung machen können. Der Nachteil ist, dass wir durch den Bau so zahlreicher Städte bereits auf die Kostenerhöhung von 10 % eingehen müssen.
Zuerst die 3 "Idealfälle" des Gewinns zum späteren Vergleich:
Nur Kleinstädte:
[mm] 10000000*1500-\summe_{k=1}^{10000000} [/mm] (100000 *(110/100)^(k-1))
Nur Städte:
[mm] 10000000*2500-\summe_{k=1}^{10000000} [/mm] (250000*(110/100)^(k-1))
Nur Grosstädte:
[mm] 5000000*4700-\summe_{k=1}^{5000000} [/mm] (500000*(110/100)^(k-1))

Wie du bereits hier sehen kannst, ist das Ergebniss stark von der "Zeiteinheit" abhängig. ich bitte darum, bevor jemand weiterrechnet, sicherzustellen ob die Zeiteinheit wirklich variabel ist

Hab grad leider kein Taschenrechner und keine Zeit mehr ... macht mal wer anders weiter? sorry :/

(bitte meine Überlegungen nicht zu ernst nehmen, ich bin noch in Gedanken :D )

mfg, Cyberleon

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ökonomische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]