matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRelationenOrdnungsrelation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Relationen" - Ordnungsrelation
Ordnungsrelation < Relationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ordnungsrelation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:16 Fr 05.12.2008
Autor: Lisa-19

Aufgabe
Zeigen Sie, dass die Teilerrelation für a,b [mm] \in [/mm] IN
aRb : <--> a|b
eine Ordnungsrelation auf der Menge der natürlichen Zahlen ist.

1) reflexiv
a|a, also 3:3 --> reflexiv
Beweis: zzg. a|a
<--> [mm] \exists [/mm] z [mm] \in [/mm] IN: a= z [mm] \cdot [/mm]  a  mit z= 1
--> a = 1 [mm] \cdot [/mm] a
<--> a=a
Aussage ist wahr, also reflexiv

2) antisymmetrisch
wenn a=b, dann kann man a|a betrachten, also antsymmetrisch
Beweis:
zzg. a|b und b|a --> a = b
[mm] \exists [/mm] k [mm] \in [/mm] IN und [mm] \exists [/mm] p [mm] \in [/mm] IN : b= k [mm] \cdot [/mm] a und a = p [mm] \cdot [/mm] b
--> b = k [mm] \cdot [/mm] (p [mm] \cdot [/mm] b)
--> b = k [mm] \cdot [/mm] p [mm] \cdot [/mm] b

also muss k [mm] \cdot [/mm] p = 1 sein, also k =p=1   (Kann ich das so machen? es könnte ja auch k=0.5 und p=2 sein und nicht unbedingt 1?)

also a =b

3)transitiv
Beweis: zzg. a|b und b|c --> a|c
[mm] \exists [/mm] k,p [mm] \in [/mm] IN: b = k [mm] \cdot [/mm] a und c = p [mm] \cdot [/mm] b
--> c = p [mm] \cdot [/mm] ( k [mm] \cdot [/mm] a)
--> c= p [mm] \cdot [/mm] k [mm] \cdot [/mm] a
p [mm] \cdot [/mm] k := q
--> [mm] \exists [/mm] q [mm] \in [/mm] IN : c = q [mm] \cdot [/mm] a
<--> a|c

Meine Frage ist nun, ob die Beweise so richtig sind.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ordnungsrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 16:07 Fr 05.12.2008
Autor: Gnometech

Hallo Lisa!

> Zeigen Sie, dass die Teilerrelation für a,b [mm]\in[/mm] IN
>  aRb : <--> a|b

>  eine Ordnungsrelation auf der Menge der natürlichen Zahlen
> ist.
>  1) reflexiv
>  a|a, also 3:3 --> reflexiv

>  Beweis: zzg. a|a
>  <--> [mm]\exists[/mm] z [mm]\in[/mm] IN: a= z [mm]\cdot[/mm]  a  mit z= 1

>  --> a = 1 [mm]\cdot[/mm] a

>  <--> a=a

>  Aussage ist wahr, also reflexiv

Das stimmt.
  

> 2) antisymmetrisch
>  wenn a=b, dann kann man a|a betrachten, also
> antsymmetrisch

Den Teil verstehe ich nicht... wenn $a = b$, dann kann man $a|a$ betrachten? Aber was Du unter "Beweis" schreibst ist wirklich das, was zu zeigen ist.

>  Beweis:
>  zzg. a|b und b|a --> a = b

>  [mm]\exists[/mm] k [mm]\in[/mm] IN und [mm]\exists[/mm] p [mm]\in[/mm] IN : b= k [mm]\cdot[/mm] a und a
> = p [mm]\cdot[/mm] b
>  --> b = k [mm]\cdot[/mm] (p [mm]\cdot[/mm] b)

>  --> b = k [mm]\cdot[/mm] p [mm]\cdot[/mm] b

>  
> also muss k [mm]\cdot[/mm] p = 1 sein, also k =p=1   (Kann ich das
> so machen? es könnte ja auch k=0.5 und p=2 sein und nicht
> unbedingt 1?)
>  
> also a =b

Wichtig ist hier, dass $k$ und $p$ ebenfalls natürliche Zahlen sind. Und für alle natürlichen Zahlen gilt zum Beispiel $a [mm] \leq [/mm] a [mm] \cdot [/mm] b$ mit $a = a [mm] \cdot [/mm] b$ genau dann wenn $b = 1$ gilt. Dies für die entsprechenden Werte eingesetzt liefert Dir die Behauptung sofort.
  

> 3)transitiv
>  Beweis: zzg. a|b und b|c --> a|c

>  [mm]\exists[/mm] k,p [mm]\in[/mm] IN: b = k [mm]\cdot[/mm] a und c = p [mm]\cdot[/mm] b
>  --> c = p [mm]\cdot[/mm] ( k [mm]\cdot[/mm] a)

>  --> c= p [mm]\cdot[/mm] k [mm]\cdot[/mm] a

>  p [mm]\cdot[/mm] k := q
>  --> [mm]\exists[/mm] q [mm]\in[/mm] IN : c = q [mm]\cdot[/mm] a

>  <--> a|c

Auch das stimmt.

> Meine Frage ist nun, ob die Beweise so richtig sind.

Wie gesagt: im Prinzip ist das in Ordnung, bei Teil 2) sollte vielleicht noch eine kleine Begründung hin.
  
Liebe Grüße,
Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]