matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperOrdnungsstruktur in Körpern
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Ordnungsstruktur in Körpern
Ordnungsstruktur in Körpern < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ordnungsstruktur in Körpern: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:29 Sa 09.11.2013
Autor: Lernender

Aufgabe
Sei (K,+,*) ein angeordneter Körper. Zeigen Sie, dass für r,s [mm] \in [/mm] K mit 0 [mm] \le [/mm] r < s gilt:

[mm] \bruch{r}{1+r}<\bruch{s}{1+s} [/mm]

Ich bräuchte mal einen Ansatz für diese Aufgabe. Aus der Aufgabenstellung habe ich mir schon überlegt, dass auch folgende Ungleichungen gelten müssen (dazugehörige Rechenregeln haben wir in der Vorlesung bereits bewiesen):

1.) 0 < 1+r < 1+s

2.) 0 < [mm] \bruch{1}{1+s} [/mm] < [mm] \bruch{1}{1+r} [/mm]

3.) 0 < [mm] \bruch{1+r}{1+s} [/mm] < [mm] \bruch{1+s}{1+r} [/mm] (folgt aus 1. und 2.)

4.) 0 < [mm] \bruch{r}{1+s} [/mm] < [mm] \bruch{s}{1+r} [/mm] (folgt aus Aufgabenstellung und 2.)

4. sieht ja nun schon fast aus wie das Geforderte, aber eben nur fast. Ich komm einfach nicht darauf, wie ich Umstellen muss, damit ich auf ein Ergebnis komme. Man muss sicherlich beide Terme erweitern dann was umstellen und schließlich etwas ausklammern. Ich habe schon etliches ausporbiert, bin aber bisher nicht ans Ziel gekommen.
Kann mir bitte jemand einen Tipp für einen Ansatz geben. Dafür wäre ich sehr dankbar.

LG Lernender

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ordnungsstruktur in Körpern: Antwort
Status: (Antwort) fertig Status 
Datum: 22:59 So 10.11.2013
Autor: felixf

Moin!

> Sei (K,+,*) ein angeordneter Körper. Zeigen Sie, dass für
> r,s [mm]\in[/mm] K mit 0 [mm]\le[/mm] r < s gilt:
>  
> [mm]\bruch{r}{1+r}<\bruch{s}{1+s}[/mm]
>  Ich bräuchte mal einen Ansatz für diese Aufgabe. Aus der
> Aufgabenstellung habe ich mir schon überlegt, dass auch
> folgende Ungleichungen gelten müssen (dazugehörige
> Rechenregeln haben wir in der Vorlesung bereits bewiesen):
>  
> 1.) 0 < 1+r < 1+s
>  
> 2.) 0 < [mm]\bruch{1}{1+s}[/mm] < [mm]\bruch{1}{1+r}[/mm]
>  
> 3.) 0 < [mm]\bruch{1+r}{1+s}[/mm] < [mm]\bruch{1+s}{1+r}[/mm] (folgt aus 1.
> und 2.)
>  
> 4.) 0 < [mm]\bruch{r}{1+s}[/mm] < [mm]\bruch{s}{1+r}[/mm] (folgt aus
> Aufgabenstellung und 2.)
>  
> 4. sieht ja nun schon fast aus wie das Geforderte, aber
> eben nur fast. Ich komm einfach nicht darauf, wie ich
> Umstellen muss, damit ich auf ein Ergebnis komme. Man muss
> sicherlich beide Terme erweitern dann was umstellen und
> schließlich etwas ausklammern. Ich habe schon etliches
> ausporbiert, bin aber bisher nicht ans Ziel gekommen.
>  Kann mir bitte jemand einen Tipp für einen Ansatz geben.

Multiplizier doch mal die Gleichung, die du zeigen willst, mit dem Hauptnenner. (Dieser ist positiv - warum?) Was steht dann da?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]