matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteOrthogonale Vektoren bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Skalarprodukte" - Orthogonale Vektoren bestimmen
Orthogonale Vektoren bestimmen < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonale Vektoren bestimmen: Tipp
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:01 Sa 21.04.2012
Autor: kullinarisch

Aufgabe
Die lineare Abbildung [mm] \phi: P_2(\IR)\to\IR [/mm] seu definiert durch [mm] \phi(f)=f(1). [/mm] Finden Sie [mm] Ker(\phi)^\perp [/mm] bezüglich des folgenden Skalarprodukts:

[mm] s(f,g)=\integral_{-1}^{1}{f(t)g(t) dt} [/mm]




Hallo, ich bin (vermutlich) schon fast beim Ziel. Ich bisher folgendes gemacht:

1) Die Abbildungsmatrix bezüglich der Basis [mm] \IK=\{1, t, t^2\} [/mm] und des oben genannten Skalarprodukts berechnet:

[mm] M_{\phi}(s)=\pmat{ 2 & 0 & \bruch{2}{3} \\ 0 & \bruch{2}{3} & 0 \\ \bruch{2}{3} & 0 & \bruch{2}{5}} [/mm]

2) Eine Basis vom [mm] Ker(\phi) [/mm] bestimmt: [mm] \IK_{Ker\phi}=\{(1-t^2), (t-t^2)\} [/mm]

Ich wollte hiermit arbeiten: [mm] s(v,w)=P_{\IK}(v)^T*M_{\phi}(s)*P_{\IK}(w) [/mm]

Die [mm] P_{\IK}\in\IR^3 [/mm] sind die Vektoren v,w in Tupel-Schreibweise.

für [mm] v\in Ker(\phi) [/mm] und [mm] w\in Ker(\phi)^\perp [/mm] gilt ja dann:

[mm] s(v,w)=0=P_{\IK}(v)^T*M_{\phi}(s)*P_{\IK}(w) [/mm]

Allerdings funktioniert das nicht so wie ich mir das gedacht habe, da ich trotzdem viel zu viele Variablen habe.

Also wenn ich allgemein einen Vektor aus  [mm] Ker(\phi) [/mm] in Tupel- Schreibweise haben möchte, dann sieht der so aus:

[mm] v=\lambda_1(1-t^2)+\lambda_2(t-t^1) \Rightarrow P_{\IK}(v)= \lambda_1\vektor{1 \\ 0 \\ -1} +\lambda_2\vektor{0 \\ 1 \\-1}=\vektor{\lambda_1 \\ \lambda_2 \\ -\lambda_1 -\lambda_2} [/mm]

wenn ich den so in die Gleichung oben einsetze habe ich:

[mm] 0=(\lambda_1, \lambda_2, -\lambda_1-\lambda_2)\pmat{ 2 & 0 & \bruch{2}{3} \\ 0 & \bruch{2}{3} & 0 \\ \bruch{2}{3} & 0 & \bruch{2}{5}}\vektor{x \\ y \\ z} [/mm]

diese Vektoren [mm] \vektor{x \\ y \\ z} [/mm] sind die, die ich bestimmen möchte. Also die Orthogonal zu [mm] Ker(\phi) [/mm] sind.

Führt das zum Ziel? Oder gibt es eine geeignetere Methode?

Grüße, kulli

        
Bezug
Orthogonale Vektoren bestimmen: erledigt!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:25 Sa 21.04.2012
Autor: kullinarisch

Ok hat sich erledigt, habe [mm] Ker(\phi)^\perp [/mm] gefunden! Für Interessierte: Man muss die beiden Basisvektoren vom [mm] Ker\phi [/mm] einzeln in die zuletzt genannte Gleichung setzen und zwar als Tupelschreibweise.. ohne Lambdas. Dann bekommt man 2 Gleichungen, die man lösen kann. Raus kommt eben der Vektor, der zu den beiden Basisvektoren orthogonal ist. Der Spann von diesem Vektor ist gerade [mm] Ker\phi^\perp! [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]