matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraOrthogonalräume
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Orthogonalräume
Orthogonalräume < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonalräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:38 Mo 05.06.2006
Autor: Geddie

Aufgabe
  [mm] \perp(U_{1} [/mm] + [mm] U_{2}) [/mm] =  [mm] \perp U_{1} \cap \perp U_{2} [/mm]

Hallo mal zusammen,

hab dazu eine kurze Frage.Ich soll die Gleichheit von den Orthogonalräumen zeigen. Da dachte ich mich,dass ich das über die Dimensionsformel zeigen könnte,oder? Die Dimension von  [mm] \perpU [/mm] := dimV- dimU. Aber wie ist sie dann für  [mm] \perp(U_{1} [/mm] + [mm] U_{2}) [/mm] definiert? Und ist meine Vorgehensweise überhaupt sinnvoll?

MfG

Gerd

        
Bezug
Orthogonalräume: Antwort
Status: (Antwort) fertig Status 
Datum: 12:44 Mo 05.06.2006
Autor: felixf

Hallo Gerd!

>  [mm]\perp(U_{1}[/mm] + [mm]U_{2})[/mm] =  [mm]\perp U_{1} \cap \perp U_{2}[/mm]
>  
> Hallo mal zusammen,
>  
> hab dazu eine kurze Frage.Ich soll die Gleichheit von den
> Orthogonalräumen zeigen. Da dachte ich mich,dass ich das
> über die Dimensionsformel zeigen könnte,oder? Die Dimension
> von  [mm]\perp U[/mm] := dimV- dimU. Aber wie ist sie dann für  
> [mm]\perp(U_{1}[/mm] + [mm]U_{2})[/mm] definiert? Und ist meine
> Vorgehensweise überhaupt sinnvoll?

Du kannst mit der Dimensionsformel hoechstens eine Inklusion machen, wenn du die andere Inklusion hast und alles endlich-dimensional ist.

Die eine Inklusion musst du von Hand nachrechnen. Fang doch mal mit [mm] ``$\subseteq$'' [/mm] an. Wenn $v [mm] \in \perp (U_1 [/mm] + [mm] U_2)$ [/mm] ist, so bedeutet das ja, dass $v [mm] \perp (u_1 [/mm] + [mm] u_2)$ [/mm] ist fuer alle [mm] $u_1 \in U_1$, $u_2 \in U_2$. [/mm] Und du musst jetzt zeigen, dass fuer jedes [mm] $u_1 \in U_1$ [/mm] und jedes [mm] $u_2 \in U_2$ [/mm] gilt $v [mm] \perp u_1$ [/mm] und $v [mm] \perp u_2$. [/mm] (Denk dran, das Untervektorraeume die 0 enthalten.)

LG Felix


Bezug
                
Bezug
Orthogonalräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:52 Mo 05.06.2006
Autor: Geddie

hm.erstmal danke für die schnelle antwort. aber ich glaub ich kann wenig damit anfangen, wenn du sagst v [mm] \perp u_{1} [/mm] o.ä.  kenn diesen Terminus gar nicht.  Wir haben  [mm] \perp [/mm] U := ( [mm] \xi \in [/mm] V*| [mm] \xi [/mm] (U) = 0)

Bezug
                        
Bezug
Orthogonalräume: Antwort
Status: (Antwort) fertig Status 
Datum: 13:00 Mo 05.06.2006
Autor: felixf

Hallo!

> hm.erstmal danke für die schnelle antwort. aber ich glaub
> ich kann wenig damit anfangen, wenn du sagst v [mm]\perp u_{1}[/mm]
> o.ä.  kenn diesen Terminus gar nicht.  Wir haben  [mm]\perp[/mm] U
> := ( [mm]\xi \in[/mm] V*| [mm]\xi[/mm] (U) = 0)  

Das haettest du auch gleich dazuschreiben koennen :-)

Damit geht es allerdings genauso. Ist [mm] $\xi \in \perp (U_1 [/mm] + [mm] U_2)$, [/mm] so ist [mm] $\xi \in [/mm] V^*$ mit [mm] $\xi(U_1 [/mm] + [mm] U_2) [/mm] = 0$. Du musst zeigne, dass [mm] $\xi(U_1) [/mm] = 0 = [mm] \xi(U_2)$ [/mm] ist.

Aber was bedeutet [mm] $\xi(U) [/mm] = 0$ denn? Das heisst doch gerade [mm] $\xi(u) [/mm] = 0$ fuer alle $u [mm] \in [/mm] U$.

So. Und jetzt kannst du genauso weitermachen: Aus [mm] $\xi(u_1 [/mm] + [mm] u_2) [/mm] = 0$ fuer alle [mm] $u_1 \in U_1$, $u_2 \in U_2$ [/mm] musst du folgern [mm] $\xi(u_1) [/mm] = 0$, [mm] $\xi(u_2) [/mm] = 0$ fuer alle [mm] $u_2 \in U_1$, $u_2 \in U_2$. [/mm]

LG Felix


Bezug
                                
Bezug
Orthogonalräume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:30 Mo 05.06.2006
Autor: Geddie

Ja sorry :-)  Wusste nicht, dass es da mehrere Varianten gibt... Damit kann ich aber wesentlich mehr anfangen! Danke dir und noch nen schönen Feiertag

Bezug
                                        
Bezug
Orthogonalräume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:00 Mo 05.06.2006
Autor: felixf

Hallo Gerd!

> Ja sorry :-)  Wusste nicht, dass es da mehrere Varianten
> gibt...

Die andere Moeglichkeit sind Orthogonalraeume (im Woertlichen Sinne ;-) ) in euklidischen Vektorraeumen. Fuer reelle endlich-dimensionale Vektorraeume $V$ mit einer geeigneten Identifikation $V = V^*$ entsprechen sich die beiden Definitionen auch.

> Damit kann ich aber wesentlich mehr anfangen! Danke
> dir und noch nen schönen Feiertag

Dir auch nen schoenen Feiertag!

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]