matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenOrthonormalbasis, Darstellung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionen" - Orthonormalbasis, Darstellung
Orthonormalbasis, Darstellung < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthonormalbasis, Darstellung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:34 Mo 23.04.2012
Autor: quasimo

Aufgabe
Man bestimme eine Orthonormalbasis des [mm] \IR^2 [/mm] so, dass ein Basisvektor
dieselbe Richtung wie (1; 2) hat. Man bestimme die Darstellung des Vektors (1; 1) in dieser Basis.


Hallo

Ich normiere (1;2)
[mm] (1/\wurzel{5};2/\wurzel{5}) [/mm]
Dann drehe ich diesen um 90 Grad und erhalte [mm] (2/\wurzel{5};-1/\wurzel{5}) [/mm]

[mm] (1/\wurzel{5};2/\wurzel{5}) und(2/\wurzel{5};-1/\wurzel{5}) [/mm]
sind nun die Orthonormalbasis des [mm] \IR^2 [/mm]

Wie macht man das nun mit der Darstellung von (1;1) ?
[mm] (1/\wurzel{5};2/\wurzel{5}) +(2/\wurzel{5};-1/\wurzel{5}) [/mm] =
[mm] (3/\wurzel{5};1/\wurzel{5}) [/mm]

STimmt das?
Wie macht man das sonst in der Regel?


Ist ins falsche Forum gerutscht, sry ;)

        
Bezug
Orthonormalbasis, Darstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:41 Mo 23.04.2012
Autor: leduart

Hallo nimm deine 2 Basisvektoren, [mm] b_1 [/mm] und [mm] b_2 [/mm] dann muss [mm] r*b_1+s*b_2=(1,1) [/mm] sein. r,s bestimmen.
mit r=s=1 wie du es gemacht hast ist es ja offensichtlich falsch.
Gruss leduart


Bezug
                
Bezug
Orthonormalbasis, Darstellung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:47 Mo 23.04.2012
Autor: quasimo

Okay.
Aber wiso stimmt meine ARt nicht? Ich hab doch die zwei Vektoren Normiert und sie bilden eine Basis.

Im [mm] \IR^2 [/mm] sind [mm] e_1 [/mm] und [mm] e_2 [/mm] auch normal aufeinander und bilden eine Basis, wenn ich die addiere kommt (1;1) raus.
Also dachte ich, ich kann hier auch die Orthonormalbasis addieren und erhalte die Darstellung von (1;1)

Bezug
                        
Bezug
Orthonormalbasis, Darstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:02 Mo 23.04.2012
Autor: leduart

Hallo
du hast doch jetzt ne andere Basis, dann kann (1,1) doch nicht dieselbe Darstellung haben. in der neuen basis gibt es einen vektor [mm] 1*b1+1*b2=(1,1)_b [/mm]
du sollst den [mm] Vektor(1,1)_e [/mm]  wobei e die übliche Basis ist in der neuen Basis darstellen.
was du gemacht hast ist [mm] (1,1)_b [/mm]  in der alten Basis darzustellen.
Wenn [mm] (1,1)_b [/mm] gemeint wäre, dann ist es ja schon dargestellt!
gesucht ist also [mm] /1,1)_e=(r,s)_b [/mm]
gruss leduart

Bezug
                                
Bezug
Orthonormalbasis, Darstellung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:07 Mo 23.04.2012
Autor: quasimo

mercii ;)
LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]