matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteOthonormalbasis aus EV
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Eigenwerte" - Othonormalbasis aus EV
Othonormalbasis aus EV < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Othonormalbasis aus EV: Idee
Status: (Frage) beantwortet Status 
Datum: 16:08 Di 23.01.2007
Autor: celeste16

Aufgabe
Finden Sie eine Orthonormalbasis, die aus Eigenvektoren für die angegebene Matrix besteht.

A = [mm] \pmat{ -2 & i \\ -i & -2 } [/mm]


ich hab hier "nur" die frage wie ich vorgehen muss:

- EV von A berechnen
aber dann?

ich weiß wie ich eine orthonormalbasis berechne, aber nicht wie ich diese aufgabe lösen soll

könnt ihr mir ne anleitung geben?

        
Bezug
Othonormalbasis aus EV: Antwort
Status: (Antwort) fertig Status 
Datum: 23:14 Di 23.01.2007
Autor: angela.h.b.


> Finden Sie eine Orthonormalbasis, die aus Eigenvektoren für
> die angegebene Matrix besteht.
>  
> A = [mm]\pmat{ -2 & i \\ -i & -2 }[/mm]
>  
> ich hab hier "nur" die frage wie ich vorgehen muss:
>  
> - EV von A berechnen
>  aber dann?
>  
> ich weiß wie ich eine orthonormalbasis berechne, aber nicht
> wie ich diese aufgabe lösen soll

>

Hallo,

Du hast ja schon die richtige Idee.
Eigenwerte berechnen, dann die Eigenvektoren.

Nun hast Du hier eine Matrix vorliegen, welche hermitesch ist. Das hat zur Folge, daß die Eigenvektoren zu verschiedenen Eigenwerten "automatisch" orthoGONal sind. In dem Fall verschiedenr Eigenwerte mußt Du  sie ggf. noch normieren, denn es ist ja eine OrthNORMalbasis gesucht.

Hat die Matrix zwei gleiche Eigenwerte, mußt Du hingegen Deine Eigenvektoren orthonormalisieren.

Gruß v. Angela

Bezug
                
Bezug
Othonormalbasis aus EV: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:07 Mi 24.01.2007
Autor: celeste16

ach so, danke.
habe mir das viel komplizierter gedacht

Bezug
                        
Bezug
Othonormalbasis aus EV: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:09 Do 25.01.2007
Autor: angela.h.b.

Hallo,

beachte bitte die editierte Fassung meiner Antwort.

Es spielt zwar für die aktuelle Aufgabe keine Rolle, da die Eigenwerte verschieden sind, aber Du solltest wissen, daß bei hermiteschen Matrizen die
Eigenvektoren zu verschiedenen Eigenwerten orthogonal sind.

Die Eigenvektoren zu gleichen Eigenwerten mußt Du orthogonalisieren, um eine Orthogonalbasis zu erhalten.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]