matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenkomplexe ZahlenPaare bei komplexen Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "komplexe Zahlen" - Paare bei komplexen Zahlen
Paare bei komplexen Zahlen < komplexe Zahlen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Paare bei komplexen Zahlen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:04 Di 30.11.2010
Autor: snyker

Aufgabe
Bestimmen Sie die drei Paare [mm] (u_1,v_1),(u_2,v_2),(u_3,v_3)\in\IC^2 [/mm] , mit [mm] u^3_k=z_1, v^3_k=z_2 [/mm] und [mm] u_k [/mm] * [mm] v_k [/mm] =2, für k= 1,2,3.
[mm] z_1 [/mm] = -2+2i  und  [mm] z_2 [/mm] = -2-2i

Wie bilde ich jetzt diese Paare? Das Paar u und v bezieht sich doch auf die Berechnung mit dem Index k. Aber wenn ich jetzt die Berechnung für [mm] u^3_k [/mm] und [mm] v^3_k [/mm] bekomme ich für jeden Index das gleiche ergebnis.
Für [mm] u^3 [/mm] erhalte ich 16+16i und für [mm] v^3 [/mm] erhalte ich 16-16i.
Wie kommt da jetzt der Index k ins Spiel ?

Vielen Dank für die Hilfe.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Paare bei komplexen Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:14 Di 30.11.2010
Autor: abakus


> Bestimmen Sie die drei Paare
> [mm](u_1,v_1),(u_2,v_2),(u_3,v_3)\in\IC^2[/mm] , mit [mm]u^3_k=z_1, v^3_k=z_2[/mm]
> und [mm]u_k[/mm] * [mm]v_k[/mm] =2, für k= 1,2,3.
>  [mm]z_1[/mm] = -2+2i  und  [mm]z_2[/mm] = -2-2i
>  Wie bilde ich jetzt diese Paare? Das Paar u und v bezieht
> sich doch auf die Berechnung mit dem Index k. Aber wenn ich
> jetzt die Berechnung für [mm]u^3_k[/mm] und [mm]v^3_k[/mm] bekomme ich für
> jeden Index das gleiche ergebnis.
>  Für [mm]u^3[/mm] erhalte ich 16+16i und für [mm]v^3[/mm] erhalte ich
> 16-16i.
>  Wie kommt da jetzt der Index k ins Spiel ?
>  
> Vielen Dank für die Hilfe.

Hallo,
[mm] z_1 [/mm] und [mm] z_2 [/mm] haben beide den Betrag [mm] 2\wurzel2 [/mm] .
Wenn man den mal ausklammert, erhält man
[mm] z_1=2\wurzel{2}(-\bruch{\wurzel2}{2}+i*\bruch{\wurzel2}{2}), [/mm]
also
[mm] z_1=2\wurzel{2}(cos [/mm] 135°+i*sin 135°)
Es gibt drei komplexe Zahlen, von denen das gerade die dritte Potenz ist.
Analog gilt [mm] z_2=2\wurzel{2}(-\bruch{\wurzel2}{2}+i*\bruch{-\wurzel2}{2}), [/mm] wofür es auch eine trigonometrische Darstellung gibt.
Gruß Abakus

>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Paare bei komplexen Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:30 Di 30.11.2010
Autor: snyker

Danke, soweit hab ich garnicht gedacht. Nur wie entsteht jetzt mein Paar? Was für werte habe ich dann für [mm] (u_1,v_1) [/mm] ?

Bezug
                        
Bezug
Paare bei komplexen Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:35 Di 30.11.2010
Autor: leduart

Hallo
[mm] u_1 [/mm] ist die erste Wurzel, [mm] u_2 [/mm] die zweite  u3_ die dritte.
entsprechend v
Gruss leduart


Bezug
                                
Bezug
Paare bei komplexen Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:39 Di 30.11.2010
Autor: abakus


> Hallo
>  [mm]u_1[/mm] ist die erste Wurzel, [mm]u_2[/mm] die zweite  u3_ die dritte.
>  entsprechend v
>  Gruss leduart
>  

Gemeint ist: es sind die jeweils drei Möglichkeiten für die dritten Wurzel.
Gruß Abakus


Bezug
                                        
Bezug
Paare bei komplexen Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:48 Di 30.11.2010
Autor: snyker

Also dann z.B. noch [mm] \sin45 [/mm] und [mm] \cos45 [/mm] und [mm] \sin\bruch{pi}{4} [/mm] und der dazu gehörige cos.

Ist das so richtig ?

Bezug
                                                
Bezug
Paare bei komplexen Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:53 Di 30.11.2010
Autor: abakus


> Also dann z.B. noch [mm]\sin45[/mm] und [mm]\cos45[/mm] und [mm]\sin\bruch{pi}{4}[/mm]
> und der dazu gehörige cos.
>  
> Ist das so richtig ?

45° ist ein mögliches Argument für die 3. Wurzel von [mm] z_1, [/mm] es gibt noch 165° und 285°.
Vergiss nicht die dritte Wurzel des Betrages!
Gruß Abakus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]