matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Parabeln, Scheitelform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - Parabeln, Scheitelform
Parabeln, Scheitelform < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parabeln, Scheitelform: Aufgabe1
Status: (Frage) beantwortet Status 
Datum: 12:16 So 05.11.2006
Autor: Janine10b

Aufgabe
Die Parabel p2 mit dem Scheitelpunkt S2(-1/5) geht durch den Punkt P(2/3,5). Bestimme f2(x) in der Scheitelform (a=?).

Hallo,
also ich suche zunächst den Streckungsfaktor.

[mm] a=(x-1)^2+5 [/mm]

d.h. -1 von S2 ist das x und 5 das y.

ist das richtig?

        
Bezug
Parabeln, Scheitelform: Antwort
Status: (Antwort) fertig Status 
Datum: 13:01 So 05.11.2006
Autor: mathmetzsch

Hallo,

na wie die Scheitelpunktsform aussieht, weißt du ja bestimmt:

[mm] f(x)=a*(x-b)^{2}+c. [/mm]

Dabei ist (b|c) der Scheitelpunkt der Funktion. Du brauchst also nur diesen erst mal einzusetzen:

[mm] f(x)=a(x-1)^{2}+5. [/mm]

Jetzt hast du noch den zweiten Punkt gegeben. Diesen setzen wir jetzt ein, um a auszurechnen. Der Punkt lautet (2/3,5), also
[mm]5=a(2/3-1)^{2}+5[/mm]
[mm] \gdw [/mm] 0=a

Die Gleichung lautet also [mm] f(x)=0*(x-1)^{2}+5=5. [/mm]

Deine Funktion ist also eine Konstante und keine wirkliche quadratische Funktion, wenn ich mich nicht verrechnet habe. Man sieht das aber auch an den Punkten. Sie haben beide denselben y-Wert. Da quadratische Funktionen aber streng monoton steigend bzw. fallend (je nach Lage des Scheitelpunktes) sind, kann das nicht sein.

Viele Grüße
Daniel

Bezug
        
Bezug
Parabeln, Scheitelform: Antwort
Status: (Antwort) fertig Status 
Datum: 13:35 So 05.11.2006
Autor: Zwerglein

Hi, Janine,

> Die Parabel p2 mit dem Scheitelpunkt S2(-1/5) geht durch
> den Punkt P(2/3,5). Bestimme f2(x) in der Scheitelform
> (a=?).

>  also ich suche zunächst den Streckungsfaktor.
>  
> [mm]a=(x-1)^2+5[/mm]

Der Ansatz ist falsch! In der Scheitelform der Parabel steht die x-Koordinate des Scheitels MIT UMGEKEHRTEM VORZEICHEN!!

Daher: y = a*(x [mm] \red{+} 1)^{2} [/mm] + 5

Nun setzt Du den 2. Punkt ein, um a zu bestimmen:

3,5 = [mm] a*(2+1)^{2} [/mm] + 5
-1,5 = 9a
a = [mm] -\bruch{1}{6} [/mm]

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]