matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenParabeln im Koordinatensystem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Geraden und Ebenen" - Parabeln im Koordinatensystem
Parabeln im Koordinatensystem < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parabeln im Koordinatensystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:37 Do 10.07.2008
Autor: matherein

Aufgabe
Überprüfen Sie, ob die Gerade g Sekante, Tangente oder Passante der Parabel p ist, und bestimmen Sie gegebenenfalls gemeinsame Punkte.

p: y² = [mm] \bruch{3}{2}x, [/mm] g: 4y -3x -6 = 0

Hallo an alle Mitglieder des Matheraumforums,

diese Aufgabe habe ich in  keinem anderen Online-Matheforum gestellt.

Als Ergebnis steht im Lösungsbuch: Tangente, B(6/3), y = [mm] \bruch{3}{4}x [/mm] + [mm] \bruch{3}{2} [/mm]

So rechne ich:
4y -3x -6 = 0
4y = 3x + 6

y= [mm] \bruch{3}{4}x [/mm] + [mm] \bruch{6}{4} [/mm]

[mm] (\bruch{3}{4}x [/mm] + [mm] \bruch{6}{4})² [/mm] =  [mm] \bruch{3}{2}x [/mm]

[mm] \bruch{9}{16}x² [/mm] + [mm] \bruch{9}{4}x [/mm] + [mm] \bruch{36}{16} [/mm] = [mm] \bruch{3}{2}x [/mm]

[mm] \bruch{9}{16}x² [/mm] + [mm] \bruch{3}{4}x [/mm] + [mm] \bruch{36}{16} [/mm] = 0

x² + [mm] \bruch{4}{3}x [/mm] + 4 = 0

[mm] -\bruch{2}{3}x \pm \wurzel{\bruch{4}{9}-4} [/mm]

Es muss bei einer Tangente aber ja der Term unter der Wurzel null sein, weil ja die Gleichung nur eine Lösung besitzen darf.

Was rechne ich also falsch?

Danke im Voraus.
matherein

        
Bezug
Parabeln im Koordinatensystem: Antwort
Status: (Antwort) fertig Status 
Datum: 23:05 Do 10.07.2008
Autor: angela.h.b.


> Überprüfen Sie, ob die Gerade g Sekante, Tangente oder
> Passante der Parabel p ist, und bestimmen Sie
> gegebenenfalls gemeinsame Punkte.
>  
> p: y² = [mm]\bruch{3}{2}x,[/mm] g: 4y -3x -6 = 0
>  Hallo an alle Mitglieder des Matheraumforums,
>  
> diese Aufgabe habe ich in  keinem anderen Online-Matheforum
> gestellt.
>  
> Als Ergebnis steht im Lösungsbuch: Tangente, B(6/3), y =
> [mm]\bruch{3}{4}x[/mm] + [mm]\bruch{3}{2}[/mm]
>  
> So rechne ich:
>  4y -3x -6 = 0
>  4y = 3x + 6
>  
> y= [mm]\bruch{3}{4}x[/mm] + [mm]\bruch{6}{4}[/mm]
>  
> [mm](\bruch{3}{4}x[/mm] + [mm]\bruch{6}{4})²[/mm] =  [mm]\bruch{3}{2}x[/mm]
>  
> [mm]\bruch{9}{16}x²[/mm] + [mm]\bruch{9}{4}x[/mm] + [mm]\bruch{36}{16}[/mm] =
> [mm]\bruch{3}{2}x[/mm]
>  
> [mm]\bruch{9}{16}x²[/mm] + [mm]\bruch{3}{4}x[/mm] + [mm]\bruch{36}{16}[/mm] = 0
>  
> x² + [mm]\bruch{4}{3}x[/mm] + 4 = 0
>  
> [mm]-\bruch{2}{3}x \pm \wurzel{\bruch{4}{9}-4}[/mm]

Hallo,

abgesehen davon, daß hier sicher [mm] x=-\bruch{2}{3} \pm \wurzel{\bruch{4}{9}-4} [/mm] stehen sollte, entdecke ich keinen Fehler.

Da bei Dir der Ausdruck unter der Wurzel negativ ist, weiß man, daß die Gerade eine Passante des Graphen von y²=1.5x ist, ein Plot bestätigt dies. (y²=1.5x ist eine gekippte Parabel, hast Du alles richtig abgeschrieben?)

Entweder ist Dein Lösungsbuch falsch, oder Du hast die Aufgabe alsch abgeschrieben. Deine Rechnung ist jedenfalls richtig.

Gruß v. Angela


Bezug
                
Bezug
Parabeln im Koordinatensystem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:34 Fr 11.07.2008
Autor: matherein

Hallo Angela,

danke für die Antwort zu so später Stunde (wäre aber auch am nächsten Tag gegangen:)

Die Aufgabe habe ich noch einmal überprüft, alles habe ich richtig abgetippt.
In diesem Lösungsbuch sind wirklich mehr Fehler als erlaubt!!!
Ich bin wirklich froh, dass es den Matheraum gibt

Mit freundlichem Gruß
matherein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]