Parameter-Kurvendiskussion < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Gegeben sind die Funktionen kk mt [mm] f(x)=x^2+kx+k.
[/mm]
Untersuche allgemeine die funktion f.Skizziere den Graphen für k=-2, für k=0 und für k=-2. |
Hallo,
wir haben jetzt angefangen mit Parametern zu rechnen und ich verstehe einfach nicht,was ich mit diesem "k" machen soll.Man soll genauso vorgehen wie bei einer normalen Kurvendiskussion,aber wo liegt der rechnerische Unterschied zweischen der normalen Kurvendsikussion und der mit k?Dann hab hier noch zwei Fragen:
1)Lautet die erste Ableitung f´(x)=2xk ?
2)Zuerst muss man doch extremstellen,Nullstellen usw ausrechnen.Bei den Extremstellen muss ich dann die WErte für k einsetzten,oder? k=2 usw.?
Dann verändern sich die Werte enstprechen der k-Werte?
Mit freundlichem Gruss,
Tokhe-Itho
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:43 So 31.08.2008 | Autor: | Infinit |
Hallo Tokhey-Itho,
das k ist nichts weiter als ein konstanter Faktor und so behandelst Du ihn auch beim Ableiten. Er bleibt also erhalten. Demzufolge ist die erste Ableitung Deiner Gleichung
$$ [mm] f^{'}(x) [/mm] = 2x + k $$
und damit kannst Du dann weiterrechnen wie gewohnt. Das k beeinflusst natürlich die Lage der Nulldurchgänge und der Extrema der Funktion.
Viel Spaß dabei,
Infinit
|
|
|
|
|
Es gibt ja Nullstellen oder andre Punkte,die für alle Kurven gelten.Woher weiß ich welche das sind?
Also um die Kurve für z.B k=2 auszurechnen,brauche ich nur2 für k einsetzen?
Gruss
|
|
|
|
|
Hallo, um die Nullstellen allgemein von [mm] f(x)=x^{2}+kx+k [/mm] zu berechnen, kannst due die p-q-Formel benutzen,
p=k und q=k
[mm] x_1_2=-\bruch{k}{2}\pm\wurzel{\bruch{k^{2}}{4}-k}
[/mm]
Für die Diskriminante gilt [mm] \bruch{k^{2}}{4}-k\ge0, [/mm] überlege dir, für welche k das gilt, dann hat sich eigentlich der Fall k=2 schon beantwortet, du kannst natürlich von der Funktion [mm] f(x)=x^{2}+2x+2 [/mm] auch die Nullstellen berechnen, alle Funktion haben an anderen Stellen die Nullstellen, vorausgesetzt, es existieren überhaupt Nullstellen,
Steffi
|
|
|
|
|
Aufgabe | f(x)= [mm] x^2+kx+k
[/mm]
f`(x)=2x+k (Extremstellen
es gibt keine Extremstellen,oder? Weder 2x kann k werden,noch k kann 2x werden?
Da stimmt etwas nicht,weil man sonst die Kurve gar nicht zeichnen kann,oder?Bei solchen Aufgaben müssen Extremstellen immer exisiteren,oder?
f``(x)=2 ungleich 0
heißt,der Wendepunkt liegt bei 6? |
...
|
|
|
|