matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenParameter und Koordinatenform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Abbildungen" - Parameter und Koordinatenform
Parameter und Koordinatenform < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parameter und Koordinatenform: Korrektur
Status: (Frage) beantwortet Status 
Datum: 23:09 Sa 14.12.2013
Autor: Cccya

Aufgabe
Die affine Ebene E des R3
sei in Koordinatenform gegeben durch

[mm] (x,y,z)`\in [/mm] R3 , 2x+y-z=3


die affine Gerade G des R3
sei in Parameterform gegeben durch

(1,1,1)`+d(1,0,-1)`, d [mm] \in [/mm] R3

(a) Geben Sie E in Parameterform und G in Koordinatenform an.



(b) Schreiben Sie E, G und E Schnitt G jeweils als affine Unterräume der Form A(W) = v+W
mit einem Vektor v [mm] \in [/mm] R3 und einem linearen Unterraum W  [mm] \subseteq [/mm] R3
.

Meine Lösung

a) Für die Ebene

x= 0+k+0m

y= 0+ 0k+m

z= -3+2k+m


(x,y,z)'=(0,0,-3)'+k(1,0,2)'+m(0,1,1)'

Für die Gerade

x = 1+d

y= 1+0d

z=1-d

also

(x,y,z)' [mm] \in [/mm] R3, x+z=2 und y=1

b)

E : Ist die angegebene Parameterform nicht schon ein affiner Unterraum?
A(X) = v+W mit v=(0,0,-3)' und W: (a,b,c)'= k(1,0,2)'+m(0,1,1)' [mm] \subseteq [/mm] R3

G: A(X) = v+W mit v(1,1,1)'und W: (a,b,c)'= d(1,0,-1)' [mm] \subseteq [/mm] R3

E Schnitt G: Gleichsetzten der Parameterformen ergibt eine eindeutige Lösung: (k,m,d) = (4/3, 1, 1/3), also ist E Schnitt G: (4/3, 1, 2/3)
also A(X) =v+W mit v = (4/3,1, 2/3) und W: (0) denn eine Menge die nur den Nullvektor enthält ist ein linearer Unterraum.

Ist das richtig? Was müsste ich eventuell noch ergänzen? Vielen Dank.



        
Bezug
Parameter und Koordinatenform: Antwort
Status: (Antwort) fertig Status 
Datum: 00:32 So 15.12.2013
Autor: leduart

Hallo
richtig, W sollte man als Spann des oder der Vektoren schreiben.
Gruss leduart

Bezug
        
Bezug
Parameter und Koordinatenform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:36 So 15.12.2013
Autor: Al-Chwarizmi


> Die affine Ebene E des R3  .....

sorry, aber was soll denn der Quatsch mit dem  ffi     ?

Durch solche Mätzchen förderst du die Lust, sich
deine Aufgabe überhaupt nicht anzuschauen, erheblich.

Ferner:

Die Strichlein etwa in der Zeile

(x,y,z)'=(0,0,-3)'+k(1,0,2)'+m(0,1,1)'

sollten eigentlich bedeuten, dass man die transpo-
nierten Vektoren meint. Das notiert man nicht mit
einem Strichlein, sondern mit einem hochgestellten T,
also:

[mm] (x,y,z)^T=(0,0,-3)^T+k*(1,0,2)^T+m*(0,1,1)^T [/mm]

Man könnte die Gleichung aber auch mit Spalten-
vektoren schreiben:

    [mm] $\pmat{x\\y\\z}\ [/mm] =\ [mm] \pmat{0\\0\\-3}\ [/mm] +\ [mm] k*\pmat{1\\0\\2}\ [/mm] +\ [mm] m*\pmat{0\\1\\1}$ [/mm]

oder es einfach bei Zeilenvektoren belassen:

(x,y,z) = (0,0,-3) + k (1,0,2) + m (0,1,1)

LG ,   Al-Chw.




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]