matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungParameterbestimmung a
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Parameterbestimmung a
Parameterbestimmung a < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parameterbestimmung a: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:15 So 05.09.2010
Autor: Markus234

Aufgabe
Für welchen Wert des Parameters a>0 [mm] (a\in\IR) [/mm] hat die vom Graphen der Funktion f(x)= [mm] -a*(x^2-1) [/mm] und der x-Achse eingeschlossene Fläche den Inhalt 2 ?

Hallo,

desöfteren bei solchen Aufgabenstellungen weiß ich leider nicht wie ich an die Aufgabe herangehen soll und was ich eigentlich machen muss. Deshalb die Frage wie ich das machen kann

f(x)= -a* [mm] (x^2-1) [/mm]
F(x)= [mm] -a*(\bruch{1}{2}x^2-1x) [/mm]

Gruß Markus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Parameterbestimmung a: Antwort
Status: (Antwort) fertig Status 
Datum: 19:20 So 05.09.2010
Autor: ONeill

Hi!
> desöfteren bei solchen Aufgabenstellungen weiß ich leider
> nicht wie ich an die Aufgabe herangehen soll und was ich
> eigentlich machen muss. Deshalb die Frage wie ich das
> machen kann
>  
> f(x)= -a* [mm](x^2-1)[/mm]
>  F(x)= [mm]-a*(\bruch{1}{2}x^2-1x)[/mm]

Die Stammfunktion ist nicht ganz richtig, schau Dir das nochmal an. Ansonsten ist das ganze nicht all zu schwer. Du berechnest das Integral. Dazu brauchst Du die Schnittpunkte des Graphen mit der x-Achse. Wie berechnet man die?
Dann setzt Du das ganze gleich 2, denn Dein Integral soll ja genau 2 werden. Anschließend kannst Du nach a umstellen. Versuchs mal :-)

Gruß Christian


Bezug
                
Bezug
Parameterbestimmung a: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:07 Mo 06.09.2010
Autor: Markus234

Stimmt die Stammfunktion jetzt ?


> f(x)= [mm] -a*(x^2-1) [/mm]  
>  F(x)= [mm] -a*(\bruch{1}{3}x^3-1x) [/mm]

Gruß´Markus

Bezug
                        
Bezug
Parameterbestimmung a: so richtig
Status: (Antwort) fertig Status 
Datum: 20:09 Mo 06.09.2010
Autor: Loddar

Hallo Markus!


So stimmt es [daumenhoch] .


Gruß
Loddar



Bezug
                                
Bezug
Parameterbestimmung a: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:34 Mo 06.09.2010
Autor: Markus234

Hallo,

Habe ich richtig gerechnet :-) ?

-Schnittpunkte des Graphen mit x-Achse für Integral
-Integral berechnet
-a rausbekommen


[mm] f(x)=-a*(x^2-1) [/mm]
[mm] f(x)=-ax^2+1a [/mm]

[mm] -ax^2+1a+0=0 [/mm] / :(-1)
[mm] ax^2-1a+0=0 [/mm]
ax 1,2= +0,5 [mm] \pm \wurzel{(-\bruch{1}{2})^2-0} [/mm]
ax 1,2 = + 0,5 [mm] \pm \wurzel\bruch{1}{4}-0 [/mm]
ax 1,2 = +0,5 [mm] \pm [/mm] 0,5
ax1= 1 ax2= 0

f(x)= [mm] \integral_{0}^{1}[-a*(x^2-1)] [/mm] dx= [mm] [-a(\bruch{1}{3}x^3-1x)]= [/mm]
[mm] [-\bruch{1}{3} ax^3+1ax] [/mm] = [mm] -\bruch{1}{3} a*1^3 [/mm] + 1a*1 - [mm] (-\bruch{1}{3}a [/mm] * [mm] 0^3+1a [/mm] * 0) = - [mm] \bruch{1}{3}a+1a-(1a) [/mm]
[mm] =-\bruch{1}{3}a+1a-1a [/mm]
= -1/3

Gruß Markus

Bezug
                                        
Bezug
Parameterbestimmung a: Antwort
Status: (Antwort) fertig Status 
Datum: 21:55 Mo 06.09.2010
Autor: ONeill

Hi!
> -Schnittpunkte des Graphen mit x-Achse für Integral
>  -Integral berechnet
>  -a rausbekommen

[ok]

>
> [mm]f(x)=-a*(x^2-1)[/mm]
>  [mm]f(x)=-ax^2+1a[/mm]

>[ok]

> [mm]-ax^2+1a+0=0[/mm] / :(-1)
>  [mm]ax^2-1a+0=0[/mm]

[ok], +0 kannst Du natürlich weglassen

>  ax 1,2= +0,5 [mm]\pm \wurzel{(-\bruch{1}{2})^2-0}[/mm]
>  ax 1,2 = +
> 0,5 [mm]\pm \wurzel\bruch{1}{4}-0[/mm]
>  ax 1,2 = +0,5 [mm]\pm[/mm] 0,5
>  ax1= 1 ax2= 0

Warum nimmst du die p,q-Formel/quadratische Ergänzung? Das brauchst Du doch gar nicht:
[mm]-ax^2+a=0 /:(-a)[/mm]
[mm]x^2-1=0[/mm]
[mm]x=\pm 1[/mm]

> f(x)= [mm]\integral_{0}^{1}[-a*(x^2-1)][/mm] dx=
> [mm][-a(\bruch{1}{3}x^3-1x)]=[/mm]
>  [mm][-\bruch{1}{3} ax^3+1ax][/mm] = [mm]-\bruch{1}{3} a*1^3[/mm] + 1a*1 -
> [mm](-\bruch{1}{3}a[/mm] * [mm]0^3+1a[/mm] * 0) = - [mm]\bruch{1}{3}a+1a-(1a)[/mm]
>  [mm]=-\bruch{1}{3}a+1a-1a[/mm]
>  = -1/3
>  

[notok]
Die Schnittpunkte stimmen nicht, siehe oben. Bist prinzipiell aber richtig vorgegangen.

Gruß Christian


Bezug
                                                
Bezug
Parameterbestimmung a: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:57 Mo 06.09.2010
Autor: Markus234

[mm] -ax^2+a=0 [/mm] /: (-a)
[mm] x^2-1=0 [/mm] /+1
[mm] x^2=1 [/mm] / [mm] \wurzel [/mm]
x= [mm] \pm1 [/mm]

=2 setzen ist noch wichtig, hatte ich vergessen

f(x)= [mm] \integral_{-1}^{1}(-a*(x^2-1))dx=2 [/mm]
F(x)= [mm] \integral_{-1}^{1}[(-a*(\bruch{1}{3}ax^3-1x)]dx=2 [/mm]
F(x)= [mm] \integral_{-1}^{1} [-\bruch{1}{3}ax^3+1ax]dx=2 [/mm]

= [mm] -\bruch{1}{3}a *1^3+1a*1-(-\bruch{1}{3}*(-1)^3+1a*(-1))=2 [/mm]
= [mm] -\bruch{1}{3}a [/mm] + 1a - [mm] (\bruch{1}{3}a-1a)=2 [/mm]
= [mm] -\bruch{1}{3}a+ [/mm] 1a - [mm] \bruch{1}{3}a [/mm] +1a=2
= 1 [mm] \bruch{1}{3}a= [/mm] 2 / [mm] :(1\bruch{1}{3}) [/mm]
[mm] a=1\bruch{1}{2} [/mm]

Gruß Markus

Bezug
                                                        
Bezug
Parameterbestimmung a: Antwort
Status: (Antwort) fertig Status 
Datum: 23:20 Mo 06.09.2010
Autor: ONeill

Hi!
> [mm]-ax^2+a=0[/mm] /: (-a)
>  [mm]x^2-1=0[/mm] /+1
>  [mm]x^2=1[/mm] / [mm]\wurzel[/mm]
>  x= [mm]\pm1[/mm]
>  
> =2 setzen ist noch wichtig, hatte ich vergessen
>  
> f(x)= [mm]\integral_{-1}^{1}(-a*(x^2-1))dx=2[/mm]
>  F(x)= [mm]\integral_{-1}^{1}[(-a*(\bruch{1}{3}ax^3-1x)]dx=2[/mm]
>  F(x)= [mm]\integral_{-1}^{1} [-\bruch{1}{3}ax^3+1ax]dx=2[/mm]
>  
> = [mm]-\bruch{1}{3}a *1^3+1a*1-(-\bruch{1}{3}*(-1)^3+1a*(-1))=2[/mm]
>  
> = [mm]-\bruch{1}{3}a[/mm] + 1a - [mm](\bruch{1}{3}a-1a)=2[/mm]
>  = [mm]-\bruch{1}{3}a+[/mm] 1a - [mm]\bruch{1}{3}a[/mm] +1a=2
>  = 1 [mm]\bruch{1}{3}a=[/mm] 2 / [mm]:(1\bruch{1}{3})[/mm]
>  [mm]a=1\bruch{1}{2}[/mm]
>  

[ok]

Gruß Christian


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]