matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesParameterdarstellung Kurve
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Sonstiges" - Parameterdarstellung Kurve
Parameterdarstellung Kurve < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parameterdarstellung Kurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:27 So 06.05.2012
Autor: Der-Madde-Freund

Hi,

ich muss die Kurve y²=x in Parameterform darstellen, also in der Form [mm] r(t)=\vektor{x(t) \\ y(t)}. [/mm]  So, mein Problem ist nun, dass ich weiss, wie man Funktionen parametrisiert darstellt, aber bei der Relation y²=x komme ich auf keine Lösung.

Es soll als Lösung [mm] r(t)=\vektor{ |t| \\ \frac{t}{\sqrt{|t|}} }. [/mm] Aber wie kommt man darauf???

        
Bezug
Parameterdarstellung Kurve: Antwort
Status: (Antwort) fertig Status 
Datum: 16:33 So 06.05.2012
Autor: Adamantin


> Hi,
>  
> ich muss die Kurve y²=x in Parameterform darstellen, also
> in der Form [mm]r(t)=\vektor{x(t) \\ y(t)}.[/mm]  So, mein Problem
> ist nun, dass ich weiss, wie man Funktionen parametrisiert
> darstellt, aber bei der Relation y²=x komme ich auf keine
> Lösung.
>  
> Es soll als Lösung [mm]r(t)=\vektor{ |t| \\ \frac{t}{\sqrt{|t|}} }.[/mm]
> Aber wie kommt man darauf???

Am besten überlegst du dir erstmal konkrete Punkt. Die Aufösung nach y liefert ja leider erstmal [mm] $\pm \sqrt{x}$. [/mm]  Beschränken wir uns zunächst auf die positive Wurzel, so erkennen wir anhand folgender Wertetabelle:

$x=1, y=1; x=2, [mm] y=\sqrt{2}, [/mm] x=3, [mm] y=\sqrt{3}$, [/mm]

dass wir folgendermaßen parametrisieren können:

x durchläuft alle natürlichen (und natürlich auch reellen, hier im Beispiel nicht gewählt) Zahlen, daher ist wohl x=t gerechtfertigt, wenn $t [mm] \in \IR$ [/mm] gilt. Was gilt nun aber für y? Offenbar durchläuft auch y sehr regelmäßig alle Werte nacheinander, nur müssen wir die Wurzel berücksichtigen. Eine völlig korrekte Wahl wäre

[mm] $y=\sqrt{t}$ [/mm] Formen wir dies weiter um, folgt:
[mm] $\sqrt{t}=\bruch{\sqrt{t}}{1}=\bruch{\sqrt{t}*\sqrt{t}}{\sqrt{t}}=\bruch{t}{\sqrt{t}}$ [/mm]

Betrag folgt dann aus der Generalisierung auch für negative Vorzeichen.




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]