matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenParameterform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Geraden und Ebenen" - Parameterform
Parameterform < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parameterform: Gleichungen mit Parametern
Status: (Frage) beantwortet Status 
Datum: 16:08 Mo 31.05.2010
Autor: Tabachini

Hallo, ich hab mal ne kurze Frage:

Gib für a,b,c Zahlen an, sodass g parallel zu E ist, in E liegt oder E schneidet!

[mm] \pmat{ 1 & 1 & -1 | a - 2 \\ 1 & 2 & -b | 0 \\ 0 & c & -1 | 3 } [/mm]

1.gleichung mal -1

[mm] \pmat{ 1 & 1 & -1 | a - 2 \\ 0 & 1 & 1-b | 2 - a \\ 0 & c & -1 | 3 } [/mm]

zweite Gleichung mal -c ?!

[mm] \pmat{ 1 & 1 & -1 | a - 2 \\ 0 & 1 & 1-b | 2 - a \\ 0 & 0 & (1-b)*(-c) -1 | 2-a * (-c) } [/mm]

letzte Zeile : (-c + bc -1)t = ac - 2c + 3

parallel : widersprcuh
in E :  widerspruch
schneidet E : eine Lösung

naja das wäre ja einfach, wenn in der ltzten zeile der matrix nicht so viele unbekannte wären.... was soll ich jetzt machen oder ist da ein fehler

DANKE!


        
Bezug
Parameterform: Antwort
Status: (Antwort) fertig Status 
Datum: 16:32 Mo 31.05.2010
Autor: abakus


> Hallo, ich hab mal ne kurze Frage:
>
> Gib für a,b,c Zahlen an, sodass g parallel zu E ist, in E
> liegt oder E schneidet!
>  
> [mm]\pmat{ 1 & 1 & -1 | a - 2 \\ 1 & 2 & -b | 0 \\ 0 & c & -1 | 3 }[/mm]
>  
> 1.gleichung mal -1
>  
> [mm]\pmat{ 1 & 1 & -1 | a - 2 \\ 0 & 1 & 1-b | 2 - a \\ 0 & c & -1 | 3 }[/mm]
>  
> zweite Gleichung mal -c ?!
>  
> [mm]\pmat{ 1 & 1 & -1 | a - 2 \\ 0 & 1 & 1-b | 2 - a \\ 0 & 0 & (1-b)*(-c) -1 | 2-a * (-c) }[/mm]

Richig muss es heißen:
[mm]\pmat{ 1 & 1 & -1 | a - 2 \\ 0 & 1 & 1-b | 2 - a \\ 0 & 0 & (1-b)*(-c) -1 | (2-a )* (-c) +3}[/mm]

>  
> letzte Zeile : (-c + bc -1)t = ac - 2c + 3
>  
> parallel : widersprcuh
>  in E :  widerspruch

Falsch. Kein Widerspruch, sondern eine für unendlich viele Tripel (a;b;c) gültige Aussage liegt dann vor.

>  schneidet E : eine Lösung
>  
> naja das wäre ja einfach, wenn in der ltzten zeile der
> matrix nicht so viele unbekannte wären.... was soll ich
> jetzt machen oder ist da ein fehler
>  
> DANKE!
>  


Bezug
                
Bezug
Parameterform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:46 Mo 31.05.2010
Autor: Tabachini

Das war nur ein Tippfehler, aber hat iwie gar nicht meine Frage beantwortet....

Bezug
                
Bezug
Parameterform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:25 Mo 31.05.2010
Autor: abakus


> > Hallo, ich hab mal ne kurze Frage:
> >
> > Gib für a,b,c Zahlen an, sodass g parallel zu E ist, in E
> > liegt oder E schneidet!
>  >  
> > [mm]\pmat{ 1 & 1 & -1 | a - 2 \\ 1 & 2 & -b | 0 \\ 0 & c & -1 | 3 }[/mm]
>  
> >  

> > 1.gleichung mal -1
>  >  
> > [mm]\pmat{ 1 & 1 & -1 | a - 2 \\ 0 & 1 & 1-b | 2 - a \\ 0 & c & -1 | 3 }[/mm]
>  
> >  

> > zweite Gleichung mal -c ?!
>  >  
> > [mm]\pmat{ 1 & 1 & -1 | a - 2 \\ 0 & 1 & 1-b | 2 - a \\ 0 & 0 & (1-b)*(-c) -1 | 2-a * (-c) }[/mm]
>  
> Richig muss es heißen:
>   [mm]\pmat{ 1 & 1 & -1 | a - 2 \\ 0 & 1 & 1-b | 2 - a \\ 0 & 0 & (1-b)*(-c) -1 | (2-a )* (-c) +3}[/mm]
>  
> >  

> > letzte Zeile : (-c + bc -1)t = ac - 2c + 3

Das hat keine Lösung, wenn c(b-1)-1=0 und [mm] c(a-2)+3\ne [/mm] 0.
Das hat unendlich viele Lösungen, wenn c(b-1)-1=0 und c(a-2)+3= 0.

>  >  
> > parallel : widersprcuh
>  >  in E :  widerspruch
>  Falsch. Kein Widerspruch, sondern eine für unendlich
> viele Tripel (a;b;c) gültige Aussage liegt dann vor.
>  >  schneidet E : eine Lösung
>  >  
> > naja das wäre ja einfach, wenn in der ltzten zeile der
> > matrix nicht so viele unbekannte wären.... was soll ich
> > jetzt machen oder ist da ein fehler
>  >  
> > DANKE!
>  >  
>  


Bezug
        
Bezug
Parameterform: Tipp
Status: (Antwort) fertig Status 
Datum: 09:09 Di 01.06.2010
Autor: informix

Hallo Tabachini,

> Hallo, ich hab mal ne kurze Frage:
>
> Gib für a,b,c Zahlen an, sodass g parallel zu E ist, in E
> liegt oder E schneidet!
>  
> [mm]\pmat{ 1 & 1 & -1 | a - 2 \\ 1 & 2 & -b | 0 \\ 0 & c & -1 | 3 }[/mm]
>  
> 1.gleichung mal -1
>  
> [mm]\pmat{ 1 & 1 & -1 | a - 2 \\ 0 & 1 & 1-b | 2 - a \\ 0 & c & -1 | 3 }[/mm]
>  
> zweite Gleichung mal -c ?!
>  
> [mm]\pmat{ 1 & 1 & -1 | a - 2 \\ 0 & 1 & 1-b | 2 - a \\ 0 & 0 & (1-b)*(-c) -1 | 2-a * (-c) }[/mm]
>  
> letzte Zeile : (-c + bc -1)t = ac - 2c + 3
>  
> parallel : widersprcuh
>  in E :  widerspruch
>  schneidet E : eine Lösung
>  
> naja das wäre ja einfach, wenn in der ltzten zeile der
> matrix nicht so viele unbekannte wären.... was soll ich
> jetzt machen oder ist da ein fehler
>  

aus den beiden ersten Zeilen kannst du zunächst mal a und danach b bestimmen, dann wird's übersichtlicher. ;-)

Die dritte Zeile liefert dir dann die zu erwartende Fallunterscheidung:
g [mm] \parallel [/mm] E: keine Lösung
g schneidet E: genau eine Lösung
g auf E: unendlich viele Lösungen

Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]