matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenParametergleichung einer Ebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Geraden und Ebenen" - Parametergleichung einer Ebene
Parametergleichung einer Ebene < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parametergleichung einer Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:38 So 19.11.2006
Autor: splin

Aufgabe
Bestimmen sie eine Parametergleichung der Ebene E, die die Gerade [mm] l:\vec{x}=\vektor{0 \\ -1\\0}+r\vektor{1 \\ 4\\1} [/mm] enthält und auf der Geraden [mm] g:\vec{x}=\vektor{-1 \\ 1\\2}+k\vektor{4 \\ -2\\4} [/mm] senkrecht steht.

Hallo, ich habe folgende Überlegung:
Wenn Ebene E die Gerade l enthalten soll, dann kann ich Ortsvektor und Richtungsvektor der Geraden l für die Gleichung E übernemmen(stimmt das so?). Nun fehlt mir ein zweiter Richtungsvektor der Ebene E. Wenn die Ebene E auf der g senkrecht steheen soll, dann müssen ihre beide Richtungsvektoren orthogonal zum Richtungsvektor der Geraden g sein.
Wie bestimme ich den zweiten Richtungsvektor der Ebene E ?

        
Bezug
Parametergleichung einer Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 00:41 So 19.11.2006
Autor: DaMenge

Hi,

>Wenn die Ebene E auf

> der g senkrecht steheen soll, dann müssen ihre beide
> Richtungsvektoren orthogonal zum Richtungsvektor der
> Geraden g sein.

oder um es anders zu sagen : der richtungsvektor von g ist normalenvektor der ebene..
also normalenform bestimmen und in parameterform umwandeln wäre wohl das schnellste, oder?

viele Grüße
DaMenge

Bezug
                
Bezug
Parametergleichung einer Ebene: Ist das richtig so?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:46 So 19.11.2006
Autor: splin

Also, als Normalenvektor habe ich den Richtungsvektor der g übernommen und Ortsvektor habe ich von der l genommen. Dabei habe ich folgende Normalengleichung der E2 erhalten:
[mm] E:\vektor{4 \\ -2\\4}*\vec{x}=2 [/mm]

Stimmt das so?

Bezug
                        
Bezug
Parametergleichung einer Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:53 So 19.11.2006
Autor: splin

Habe mich vorher vertan und eine Mitteilung gesendet.
Eigentlich sollte es eine Frage sein.

> Also, als Normalenvektor habe ich den Richtungsvektor der g
> übernommen und Ortsvektor habe ich von der l genommen.
> Dabei habe ich folgende Normalengleichung der E2 erhalten:
>  [mm]E:\vektor{4 \\ -2\\4}*\vec{x}=2[/mm]
>  
> Stimmt das so?


Bezug
                                
Bezug
Parametergleichung einer Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 12:02 Mo 20.11.2006
Autor: M.Rex


> Habe mich vorher vertan und eine Mitteilung gesendet.
>  Eigentlich sollte es eine Frage sein.
>  > Also, als Normalenvektor habe ich den Richtungsvektor

> der g
> > übernommen und Ortsvektor habe ich von der l genommen.
> > Dabei habe ich folgende Normalengleichung der E2 erhalten:
>  >  [mm]E:\vektor{4 \\ -2\\4}*\vec{x}=2[/mm]
>  >  
> > Stimmt das so?

yep

Marius

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]