matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisPareto Optima+größten Elemente
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Pareto Optima+größten Elemente
Pareto Optima+größten Elemente < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Pareto Optima+größten Elemente: Aufgabe+Korrektur
Status: (Frage) für Interessierte Status 
Datum: 12:37 Do 09.02.2006
Autor: scientyst

Aufgabe
Ein Angebot A(X1,X2) sei besser als ein Angebot B(Y1,Y2)genau

dann,wenn X1*X2>Y1*Y2 und gleich genau dann,wenn X1*X2=Y1*Y2.

Die zulässige Menge für  [mm] \overrightarrow{X} [/mm] , [mm] \overrightarrow{Y} [/mm] sei

definiert durch  [mm] \overrightarrow{Z} \in \IR^2_{+} [/mm] mit:

1) [mm] Z_{1}+2Z_{2} \le8 [/mm]

2) [mm] Z_{1}+3Z_{2} \le9 [/mm]

a)skizzieren sie die zulässige Menge M

b)skizzieren sie die Bessermenge für das Angebot A(3,3)

c)Bestimmen sie alle pareto optima und größten Elemente

d)Ist die Vergleichsrelation eine Ordnung oder eine Präferenzrelation?

Zu a)

Habe bis jetzt die beiden Restriktionen 1 + 2 umgestellt nach [mm] Z_{1} [/mm] und Werte eingesetzt.

[mm] 1)Z_{1}+2Z_{2} \le8 \-2Z_{2} [/mm]

[mm] Z_{1}\le8-2Z_{2} [/mm]

[mm] 2)Z_{1}+3Z_{2} \le9 \-3Z_{2} [/mm]

[mm] Z_{1}\le9-3Z_{2} [/mm]

habe dann Werte eingesetzt [mm] (Z_{2}=4;Z_{2}=0;erste [/mm] Gerade

und [mm] Z_{2}=3;Z_{2}=0; [/mm] zweite Gerade)und bekomme dann 2 Geraden.

Die erste Gerade geht durch die Punkte (4,0);(0;8) und die zweite Gerade geht durch (3;0);(0;9).

Meine Frage ist jetzt ob ich nur die beiden Geraden einzeichnen muss oder ob es da noch was zum einzeichnen gibt.

Desweiteren bräuchte ich mal etwas Hilfe bei den Aufgabenteilen b,c+d,danke.

        
Bezug
Pareto Optima+größten Elemente: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:11 Fr 10.02.2006
Autor: scientyst

Kann mir bitte jemand weiterhelfen,danke.

Bezug
        
Bezug
Pareto Optima+größten Elemente: Antwort
Status: (Antwort) fertig Status 
Datum: 08:32 Do 16.02.2006
Autor: mathiash

Hallo und guten Morgen,

ich wuerde zunaechst so umstellen:


[mm] Z_2\leq 4-\frac{Z_1}{2} [/mm]

[mm] Z_2\leq 3-\frac{Z_1}{3} [/mm]

Dann eine Bemerkung: Warum heisst A(3,3) ein Angebot, wenn der Punkt (3,3) noch nicht mal zulaessig ist ?

Jedenfalls ist die Bessermenge von A(3,3) doch die Menge der zulaessigen Punkte [mm] (Z_1,Z_2), [/mm] fuer die

[mm] Z_1\cdot Z_2\geq 3\cdot [/mm] 3=9 gilt, nicht wahr ?

Nun ist doch [mm] Z_1\cdot Z_2=9 [/mm] genau dann, wenn [mm] Z_2=9\slash Z_1, [/mm] und diese Kurve kannst Du zB einzeichnen.

Die zul. Menge ist ja nun

ZUL [mm] :=\{(x,y)\in\IR_{\geq 0}^2\: |\: 0\leq x\leq 6, \:\: 0\leq y\leq 3-\frac{x}{3}\} \:\cup\: [/mm]
             [mm] \{ (x,y)\in\IR_{\geq 0\}^2\: |\: 6\leq x\leq 8,\:\: 0\leq y\leq 4-\frac{x}{2}\} [/mm]

Loesen wir doch mal

y= [mm] 3-x\slash 3,\:\: 0\leq x\leq 6,\:\: x\cdot y\geq 9\:\:\: (\star) [/mm]

und

[mm] y=4-x\slash 2,\:\: 6\leq x\leq 8,\:\: x\cdot y\geq 9\:\: (\star\star) [/mm]

Zu [mm] (\star): [/mm]
das ergibt

[mm] x^2-9x+27\leq 0\:\: 0\leq x\leq [/mm] 6, und das hat keine Loesung.

Zu [mm] (\star\star): [/mm]
das ergibt

[mm] x^2-8x+18\leq [/mm] 0, [mm] 6\leq x\leq [/mm] 8

und die Loesungsmenge ist ebenfalls leer.

Damit waere -vorausgesetzt, die Def. der besermenge stimmt, in diesem Fall diese die leere Menge.

Gruss,

Mathias



Bezug
        
Bezug
Pareto Optima+größten Elemente: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:07 Fr 17.02.2006
Autor: matux

Hallo scientyst!


Leider konnte Dir keiner mit Deinem Problem vollständig in der von Dir vorgegebenen Zeit weiterhelfen.

Vielleicht hast Du ja beim nächsten Mal mehr Glück [kleeblatt] .


Viele Grüße,
Matux, der Foren-Agent

Allgemeine Tipps wie du dem Überschreiten der Fälligkeitsdauer entgegenwirken kannst findest du in den Regeln für die Benutzung unserer Foren.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]