matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisPartialbruchzerlegung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Partialbruchzerlegung
Partialbruchzerlegung < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:24 Mi 17.05.2006
Autor: Daystrom

Aufgabe
Berechne die Partialbruch-Zerlegung der beiden rationalen Funktionen:
a) [mm] r(z) := (z^4 - i):(z^3 + i) [/mm]
b) [mm] r(z) := (z - 1):(z^2 +1)^2 [/mm]

Zu a)
Ich krieg da was ziemlich abgefahrenes raus. Mich würde interessieren, ob sich das irgendwie hingeht:
[mm] PBZ(r(z)) = z + \bruch{e^\bruch{-2\pi*i}{3} - i}{(z - e^\bruch{7*\pi*i}{6})*3*e^\bruch{-2\pi*i}{6}} + \bruch{1 - i}{-3*(z - e^\bruch{\pi*i}{2})} + \bruch{e^\bruch{14\pi*i}{3} - i}{3e^\bruch{7\pi*i}{3}(z - e^\bruch{7\pi*i}{6})} [/mm]

zu b)
Da ist ja der Grad des Nennerpolynoms größer als der Grad des Zählerpolynoms. Wie geh ich da vor? Wenn ich nach dem Algorithmus vorgehe, den ich an der Uni gelernt habe, würde da 0 rauskommen, aber das kann ich mir irgendwie nicht vorstellen.

ciao
Phil

PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:16 Do 18.05.2006
Autor: metzga

Hallo,

ich benutze für die PBZ immer die x+iy Darstellung, da man mit dieser viel
leichter addieren kann, was man beim PBZ viel eher braucht als multiplizieren.
Die exp-Darstellung ist wirklich nur für multiplizieren brauchbar.
Also zum vereinfachen von Brüchen, ist meistens die x+iy Darstellung sinnvoll.
zu deiner Aufgabe a, den mittleren Bruch hab ich genau wie du, für die anderen
müsste ich erst umrechnen.
zu b)
in deinem Algorithmus führst du zuerst eine Polynomdivision durch oder?
Der Zweck der PD ist doch den Grad des Zählers kleiner zu machen.
Da das bei b) schon der Fall ist, kannst de Schritt auslassen.
Denn damit du die PBZ durchführen kannst ist ja Vorraussetzung, das
der Grad des Zählerpolynoms kleiner ist als der des Nennerpolynoms.


b) [mm]r(z) := (z - 1):(z^2 +1)^2 = \frac{z - 1}{(z-i)^2*(z+i)^2}=\frac{A}{z-i}+\frac{B}{(z-i)^2}+\frac{C}{z+i}+\frac{D}{(z+i)^2}[/mm]
Noch nach A,B,C und D auflösen und deine PBZ ist fertig.

MfG
metzga

Bezug
                
Bezug
Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:07 Do 18.05.2006
Autor: Daystrom

Aufgabe
[mm]r(z) := (z - 1):(z^2 +1)^2 = \frac{z - 1}{(z-i)^2*(z+i)^2}=\frac{A}{z-i}+\frac{B}{(z-i)^2}+\frac{C}{z+i}+\frac{D}{(z+i)^2}[/mm]

Darf ich dich fragen, wie du auf die Brüche kommst, bzw. wie du auf die Nenner kommst?


Bezug
                        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:42 Do 18.05.2006
Autor: d_lphin

Hallo daystrom,


[guckstduhier]   []Partialbruchzerlegung


> [mm]r(z) := (z - 1):(z^2 +1)^2 = \frac{z - 1}{(z-i)^2*(z+i)^2}=\frac{A}{z-i}+\frac{B}{(z-i)^2}+\frac{C}{z+i}+\frac{D}{(z+i)^2}[/mm]
>  
> Darf ich dich fragen, wie du auf die Brüche kommst, bzw.
> wie du auf die Nenner kommst?
>  

das sind zum einen die Nullstellen des Nenners und da da noch ein ()² steht somit zweimal.

Außerdem ist [mm] (z+i)(z-i)=z²+zi-zi-i²=z²-i^{2}=z²+1 [/mm]   (denn [mm] i^{2}=-1 [/mm] )



bei Fragen: einfach fragen :-)

Gruß
Del

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]