matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisPartialbruchzerlegung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Schul-Analysis" - Partialbruchzerlegung
Partialbruchzerlegung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchzerlegung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:17 Mi 09.02.2005
Autor: elimin8tor

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hi, ich soll zu morgen erklären können wie man  [mm] \bruch{2x^2+1}{x^3+2x^2+x} [/mm] mittels einer Partialbruchzerlegung integrieren kann.

Zuerst habe ich eine Aufteilung des Bruchs vorgenommen:

[mm] \bruch{2x}{(x-1)^2} [/mm] +  [mm] \bruch{1}{x^3 + 2x^2 + x} [/mm]

und bin dann für den ersten Teil auf

[mm] \bruch{2x}{(x-1)^2}= \bruch{A}{(x-1)} [/mm] +  [mm] \bruch{B}{(x-1)} [/mm] =  [mm] \bruch{A(x-1)+B(x-1)}{(x-1)²} [/mm]
gekommen, woraus folgt:

2x = A(x-1) + b(x-1)

das bedeutet aber letztendlich, dass  [mm] \bruch{2}{3}= [/mm] A+B

Wie komme ich jetzt weiter?

        
Bezug
Partialbruchzerlegung: Fehler + Erläuterung
Status: (Antwort) fertig Status 
Datum: 18:24 Mi 09.02.2005
Autor: Max

Hallo,

ich meine, dass deine Zerlegung falsch ist. Für den Nenner gilt ja

[mm] $x^3+2x^2+x=x\cdot\left(x^2+2x+1\right)=x (x+1)^2$ [/mm]

D.h. deine Zerlegung in

[mm] $\frac{2x^2+1}{x^3+2x^2+x}=\frac{2x}{(x\red{-}1)^2}+\frac{1}{x^3+2x^2+x}$ [/mm] ist falsch.

Du kannst aber einfach im Nenner [mm] $(x\red{+}1)^2$ [/mm] setzten um es richtig zu machen. Allerdings macht es keinen Sinn bei der Zerlegung des ersten Bruchs den gleichen Nenner zu wählen, weil dann ja gelten würde [mm] $\frac{2x}{(x+1)^2}=\frac{A+B}{x+1}$. [/mm] Einer der beiden Nenner muss [mm] $(x+1)^2$ [/mm] sein, sonst klappt es nicht!

Wenn du dann $A$ und $B$ bestimmen willst kommst du auf  zwei Gleichungen, jeweils für die Koeffizienten von [mm] $x^1=x$ [/mm] bzw. [mm] $x^0=1$. [/mm]

Gruß Brackhaus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]