matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLaplace-TransformationPartialbruchzerlegung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Laplace-Transformation" - Partialbruchzerlegung
Partialbruchzerlegung < Laplace-Transformation < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchzerlegung: Korrektur
Status: (Frage) beantwortet Status 
Datum: 18:55 Mi 02.12.2009
Autor: elixia.elixia

Aufgabe
Lösen Sie das folgende Anfangswertproblem mit dem Laplace-Formalismus:

y''-4y'+4y = [mm] t^2e^t [/mm]       Y(0)=Y'(0)=0

Hallo,

für Y(s) bekomme ich:

Y(s)= [mm] \bruch{2}{(s-1)^3 \cdot (s-2) \cdot (s+2)} [/mm]

ist das so richtig?

jetzt habe ich die Partialbrüche erstellt:

[mm] \bruch{A}{s-1} +\bruch{B}{(s-1)^2} +\bruch{C}{(s-1)^3} +\bruch{D}{s-2} +\bruch{E}{s+2} [/mm]

Ist das so richtig?

Wenn ich jetzt weiter rechne kommt totaler Mist raus.

Bin für jede Hilfe dankbar.


LG Maike

        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:12 Mi 02.12.2009
Autor: MathePower

Hallo elixia.elixia,

> Lösen Sie das folgende Anfangswertproblem mit dem
> Laplace-Formalismus:
>  
> y''-4y'+4y = [mm]t^2e^t[/mm]       Y(0)=Y'(0)=0
>  Hallo,
>  
> für Y(s) bekomme ich:
>  
> Y(s)= [mm]\bruch{2}{(s-1)^3 \cdot (s-2) \cdot (s+2)}[/mm]


s=2 ist doch doppelte Nullstell von [mm]s^{2}-4s+4=0[/mm]

Daher muß Y(s) lauten:

[mm]Y(s)= \bruch{2}{(s-1)^3 \cdot (s-2)^{2}}[/mm]  


> ist das so richtig?
>  
> jetzt habe ich die Partialbrüche erstellt:
>  
> [mm]\bruch{A}{s-1} +\bruch{B}{(s-1)^2} +\bruch{C}{(s-1)^3} +\bruch{D}{s-2} +\bruch{E}{s+2}[/mm]
>  
> Ist das so richtig?
>  
> Wenn ich jetzt weiter rechne kommt totaler Mist raus.
>  
> Bin für jede Hilfe dankbar.
>  
>
> LG Maike


Gruss
MathePower

Bezug
                
Bezug
Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:43 Mi 02.12.2009
Autor: elixia.elixia

Oh ja stimmt da war ein fehler.

Danke.

Jetzt habe ich aber gleich das nächste Problem.

Ich bekomme jetzt zu folgenden Partialbrüchen:

[mm] \bruch{A}{s-1} +\bruch{B}{(s-1)^2} +\bruch{C}{(s-1)^3} +\bruch{D}{s-2} +\bruch{E}{(s-2)^2} [/mm]

Wenn ich damit weiter rechne komme ich nur zu folgendem Ergebnis:

C=2

E=2

und dann 2 = 4A-4B+6+2D

und jetzt komme ich nicht weiter.


Was mache ich falsch bzw. was mache ich nicht was ich machen muss??


LG Maike


Bezug
                        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:08 Mi 02.12.2009
Autor: MathePower

Hallo elixia.elixia,

> Oh ja stimmt da war ein fehler.
>  
> Danke.
>  
> Jetzt habe ich aber gleich das nächste Problem.
>  
> Ich bekomme jetzt zu folgenden Partialbrüchen:
>  
> [mm]\bruch{A}{s-1} +\bruch{B}{(s-1)^2} +\bruch{C}{(s-1)^3} +\bruch{D}{s-2} +\bruch{E}{(s-2)^2}[/mm]
>
> Wenn ich damit weiter rechne komme ich nur zu folgendem
> Ergebnis:
>  
> C=2
>  
> E=2
>  
> und dann 2 = 4A-4B+6+2D
>  
> und jetzt komme ich nicht weiter.
>  
>
> Was mache ich falsch bzw. was mache ich nicht was ich
> machen muss??
>  


Um die Koeffizienten A, B und D zu ermmitteln,
mußt Du

[mm]\bruch{2}{\left(s-1\right)^{3}*\left(s-2\right)^{2}}-\bruch{2}{\left(s-1\right)^{3}}-\bruch{2}{\left(s-2\right)^{2}}=\bruch{A}{s-1} +\bruch{B}{(s-1)^2}+\bruch{D}{s-2}[/mm]


vergleichen.


>
> LG Maike

>


Gruss
MathePower  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]