matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenPartialbruchzerlegung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Rationale Funktionen" - Partialbruchzerlegung
Partialbruchzerlegung < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:41 Mo 14.02.2011
Autor: David90

Aufgabe
Ich rechne gerade ein paar Klausuraufgabe durch und bin bei der PBZ hängen geblieben.

Hi Leute, also ich hab da so einige Probleme mit der PBZ. Also ich weiß, dass man sich als erstes überprüft ob der Grad vom Zähler größer als der Grad vom Nenner ist und gegebenenfalls dann eine Polynomdivision durchführt. So dann bestimmt man die Nullstellen des Nenners. Das ist ja alles kein Problem. Aber wie schreib ich das dann auf? Also ich fass mal alle möglichen Fälle zusammen:
1) wenn eine reelle NST vorhanden ist, dann steht links von der Gleichung [mm] \bruch{A}{x-NST} [/mm]
2) wenn zwei reelle NST vorhanden sind dann: [mm] \bruch{A}{x-NST1}+\bruch{B}{x-NST2} [/mm]
3) wenn eine doppelte reele NST vorhanden ist dann: [mm] \bruch{A}{(x-NST)^2}+\bruch{B}{(x-NST)} [/mm] usw.
4) wenn noch zusätzlich komplexe NST dazukommen macht man das wie bei den reellen, kommt halt drauf an ob sie doppelt vorkommen
Das ist ja soweit korrekt oder?
Was ist denn eigentlich mit dem Fall wenn im Zähler Ax+B steht? Wann gilt das?
Danke schon mal im Voraus
Gruß David


        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:08 Mo 14.02.2011
Autor: MathePower

Hallo David90,

> Ich rechne gerade ein paar Klausuraufgabe durch und bin bei
> der PBZ hängen geblieben.
>  Hi Leute, also ich hab da so einige Probleme mit der PBZ.
> Also ich weiß, dass man sich als erstes überprüft ob der
> Grad vom Zähler größer als der Grad vom Nenner ist und
> gegebenenfalls dann eine Polynomdivision durchführt. So
> dann bestimmt man die Nullstellen des Nenners. Das ist ja
> alles kein Problem. Aber wie schreib ich das dann auf? Also
> ich fass mal alle möglichen Fälle zusammen:
> 1) wenn eine reelle NST vorhanden ist, dann steht links von
> der Gleichung [mm]\bruch{A}{x-NST}[/mm]
>  2) wenn zwei reelle NST vorhanden sind dann:
> [mm]\bruch{A}{x-NST1}+\bruch{B}{x-NST2}[/mm]
> 3) wenn eine doppelte reele NST vorhanden ist dann:
> [mm]\bruch{A}{(x-NST)^2}+\bruch{B}{(x-NST)}[/mm] usw.
>  4) wenn noch zusätzlich komplexe NST dazukommen macht man
> das wie bei den reellen, kommt halt drauf an ob sie doppelt
> vorkommen


Komplexe Nullstellen treten bei reellen Polynomen
stets paarweise auf:

[mm]N_{1}=a-b*i, \ a,b \in \IR[/mm]

[mm]N_{2}=a+b*i,\ a,b \in \IR[/mm]

Der Ansatz ist dann ein anderer:

[mm]\bruch{C*x+D}{x^2-\left(N_{1}+N_{2}\right)*x+N_{1}*N_{2}}[/mm]


>  Das ist ja soweit korrekt oder?


Ja.


> Was ist denn eigentlich mit dem Fall wenn im Zähler Ax+B
> steht? Wann gilt das?
>  Danke schon mal im Voraus
>  Gruß David


Gruss
MathePower  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]