matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationPartialbruchzerlegung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - Partialbruchzerlegung
Partialbruchzerlegung < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchzerlegung: Tipp
Status: (Frage) beantwortet Status 
Datum: 08:51 Do 19.05.2011
Autor: Elfe

Aufgabe
Man berechne das folgende unbestimmte Integral mit Partialbruchzerlegung:
[mm] \integral_{}^{}{\bruch{3x^{2}+2}{x(x^{2}+2)} dx} [/mm]

Hallo,

irgendwie komme ich hier nicht weiter, wie ich die Partialbruchzerlegung machen muss... Kann mir da irgendwer helfen? Ich hab grad leider gar keinen Ansatz mehr, kommt das daher, dass ich für [mm] x^{2}+2=0 [/mm] keine Lösung finden kann?

Vielleicht kann mir ja jemand einen Ansatz geben wie ich die Partialbruchzerlegung anfangen müsste, ich stehe nämlich gerade komplett auf dem Schlauch leider...

Grüße
Elfe

        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:58 Do 19.05.2011
Autor: kushkush

Hallo,


verwende:

[mm] $\frac{3x^{2}+2}{x(x^{2}+2)}= \frac{A}{x}+ \frac{B}{x+\sqrt{2}i}+\frac{C}{x-\sqrt{2}i}$ [/mm]



Gruss
kushkush

Bezug
                
Bezug
Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:03 Do 19.05.2011
Autor: Elfe

oooook.... also komplexe zahlen hatten wir nicht in der vorlesung bisher....
gibt es nicht noch eine andere möglichkeit?

Bezug
                        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:07 Do 19.05.2011
Autor: Diophant

Hallo,

> oooook.... also komplexe zahlen hatten wir nicht in der
> vorlesung bisher....
> gibt es nicht noch eine andere möglichkeit?  

ja: gewöhnlich verwendet man für solche quadratischen Faktoren mit komplexen Nullstellen den Ansatz

[mm] \frac{Ax+B}{px^2+qx+r} [/mm]

Gruß, Diophant

Bezug
        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:05 Do 19.05.2011
Autor: reverend

Hallo Elfe,

> Man berechne das folgende unbestimmte Integral mit
> Partialbruchzerlegung:
> [mm]\integral_{}^{}{\bruch{3x^{2}+2}{x(x^{2}+2)} dx}[/mm]
>  Hallo,
>
> irgendwie komme ich hier nicht weiter, wie ich die
> Partialbruchzerlegung machen muss... Kann mir da irgendwer
> helfen? Ich hab grad leider gar keinen Ansatz mehr, kommt
> das daher, dass ich für [mm]x^{2}+2=0[/mm] keine Lösung finden
> kann?

Die gibt es im Reellen auch nicht. Der Ansatz von kushkush setzt voraus, dass hier komplex integriert wird.

> Vielleicht kann mir ja jemand einen Ansatz geben wie ich
> die Partialbruchzerlegung anfangen müsste, ich stehe
> nämlich gerade komplett auf dem Schlauch leider...

Das Nennerpolynom kann aus linearen und quadratischen Faktoren bestehen; hier hast Du eben beides.

Der Ansatz ist dann [mm] \bruch{A}{x}+\bruch{Bx+C}{x^2+2} [/mm]

Schau mal []hier.

Grüße
reverend


Bezug
                
Bezug
Partialbruchzerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:11 Do 19.05.2011
Autor: Elfe

super, vielen dank!! das wusste ich so noch gar nicht, komisch...


gruß
elfe

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]