matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisPartialsumme aller Kehrwerte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Schul-Analysis" - Partialsumme aller Kehrwerte
Partialsumme aller Kehrwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialsumme aller Kehrwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:54 Sa 19.08.2006
Autor: TopHat

Aufgabe
Berechnen Sie den Grenzwert der Partialsumme aller positiven Kehrwerte.

Hi, also ich weiß, das [mm] \bruch{1}{n}>\bruch{1}{n+1} [/mm] und [mm] \limes_{n\rightarrow\infty} \bruch{1}{n}> [/mm] = 0. Also müsste [mm] \summe_{i=1}^{n} [/mm] für n gegen positiv unendlich gegen einen Grenzwert laufen. Nun habe ich aber keine Idee, wie man rechnerisch auf einen solchen Wert kommt.

Wenn man jetzt beispielsweise n = 4 die Kehrwerte addiert, also
[mm] \bruch{1}{1}+\bruch{1}{2}+\bruch{1}{3}+\bruch{1}{4}, [/mm] so erhält man als Ergebnis

[mm] \bruch{2*3*4 + 1*3*4 + 1*2*4 + 1*2*3}{4!}. [/mm] Nun lässt sich der Nenner ja schön als Funktion f(n)=n! darstellen (aufgrund des Gleichnamigmachens), aber ich erkenne nicht, nach welcher Funktion sich der Zähler (in Abhängigkeit von n) entwickelt.

Ich wäre sehr dankbar, wenn mir jemand die Zählerfunktion erklären könnte, weil ich einfach nicht dahinter komme.

Vielen Dank.
TopHat

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Partialsumme aller Kehrwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 18:26 Sa 19.08.2006
Autor: Leopold_Gast

siehe unter []harmonische Reihe

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]