matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraPartielle Ableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Partielle Ableitung
Partielle Ableitung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:09 Mo 09.07.2007
Autor: chris2005

Aufgabe
Es sind die partiellen Ableitungen folgender Funktion gesucht:

z= x*y/ [mm] ln(x)^2 [/mm]

Die Ableitung von z nach x ist mir klar; nur bei der Ableitung nach y hab ich meine Probleme;

Wenn ich nach y ableite brauche ich ja die Quotientenregel:

u= x*y
u'= x

[mm] v=ln(x^2) [/mm]
v' ist mit der Kettenregel zu lösen

f(g)= ln(g)
f'(g)= 1/g
f'(g)= [mm] 1/x^2 [/mm]

[mm] g(y)=x^2 [/mm]
[mm] g'(y)=x^2 [/mm] , eigentlich wäre [mm] x^2 [/mm] nach y abgeleitet ja 0, da y nicht vorkommt, hier nimmt man dann doch aber auch für die Ableitung [mm] x^2, [/mm] da ja sonst, wenn ich die Kettenregel zusammenführe, also f'(g) * g'(y) rechne das Produkt 0 wäre;

stimmt das so?

        
Bezug
Partielle Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:41 Mo 09.07.2007
Autor: Steffi21

Hallo,

[mm] f(x,y)=\bruch{xy}{ln(x^{2})} [/mm]

1. Ableitung nach y:
[mm] \bruch{x}{ln(x^{2})} [/mm] ist als Faktor von y zu betrachten, also
[mm] f'_y(x,y)=\bruch{x}{ln(x^{2})}, [/mm] bedenke die Ableitung von 5y ist 5 (nach y)

2. Ableitung nach x:
u=xy
u'=y nach Faktorregel
[mm] v=ln(x^{2}) [/mm]
[mm] v'=\bruch{1}{x^{2}}*2x [/mm] nach Kettenregel
[mm] f'_x(x,y)=\bruch{u'v-uv'}{v^{2}} [/mm] nach Quotientenregel


Steffi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]